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Pixel Array for Storing Image Data
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Examples of Identifying Token Regions in an Image

& Teal In Shadow
., Teal

......................... 3 Blue In Shadow
““““““““““““““““““““ Blue

O Yellow

FIG. 6B

FIG. &C
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Token
Type B <
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FIG. 613
122~ v
Identify and Mark
Neck Pixels in Token
126~ 124
. Any
Exit Neck Pixels
?

128~

Regrow Token
without Neck Pixels

FIG. 7
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200~

Input Set T, of Type C Tokens

202~ '

For Each Token t. in Set T, Select a
Number of Potential Seeds S4 to S,

204\ v

For Each S4 to S, of Each Token t., Grow
a New Type C Token, to Generate a Set of
Tokens r¢ to r., for Each Token t,

206~ ‘

Separately Merge Tokens of Each Set r4
to r.,, to Provide Type B,,1 Tokens R;

208~ !

Store in a List All R, Tokens from
Steps 202-206

210~ \
Merge Overlapping R, Tokens
212~ !
Assign Pixels to Largest Token
214\ v

Store Type B}, Tokens, Exit

FIG. &
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300~

Select Token t. from Set
T, Identify Perimeter Pixels

306~

Exit

308~

Execute Distance Transform

310~ |

Scan Distance Map to Identify t,

312\‘ A

Check Reciprocal Links,
Store Identified Token Pair

FIG. ¢
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320~

Select Token Pair t, t,

Mean
Color Different
2

328~

Fit Each Pixel Color Channel
to a Plane

330 \ ¥

Pixel Planar Analysis for Same
Material Indication

FIG. 19
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400'\

Place Window at Each of a Series
of Preselected Scan Positions

402~ v
At Each Scan Position
Fit Plane
Fit RGB Line

404~ v

At Each Scan Position Examine
Each Pixel for Inlier Status

406\ ¥

At Each Scan Position Assign
a Membership Value to
Each Inlier Pixel

408~ !

Compile and Store Token
Data List

410~

Exit

FIG. 11
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420~

Calculate Similarity of Parameters
from Planar Fit and Line Fit Equations
from All Scan Positions

422~ v

Sort Token Data List as a Function of
Similarity Calculation

424~ v

Merge Tokens as a Function of
Sorted Data List

426~ v

Store Merged Tokens
Exit

FIG. 12
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H/(tb _wall 0 Ma “;al; * ( ( 1- aub ) Bab + (Zab Vab )
“}ac O —W’m, Mb = W * ( ( 1- aac ) ) ac + am’: ‘)rzlc)
0 “)b‘”' _“)bc MC » “}bc * ( ( 1 - O"b(' ) B be + abc ‘/bc )

=g
x
'

= [p]
where, i,jel{ab,}, V,=I1~I, and B, =V,~(V, N)

0., is a scalar, given by general scalar function o
Wy is weighted conslraints

Fig. 22
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BIDR Alignment Angle (degrees)

Fig. 24
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Angle Threshold

Gradient Magnitude (log)

Fig. 26A
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TEMPORAL CONSTRAINT RELATIONSHIP
FOR USE IN AN IMAGE SEGREGATION FOR
FRAMES OF A VIDEO

BACKGROUND OF THE INVENTION

Many significant and commercially important uses of
modern computer technology relate to images. These include
image processing, image analysis and computer vision appli-
cations. In computer vision applications, such as, for
example, object recognition and optical character recogni-
tion, it has been found that a separation of illumination and
material aspects of an image can significantly improve the
accuracy and effectiveness of computer performance. Signifi-
cant pioneer inventions related to the illumination and mate-
rial aspects of an image are disclosed in U.S. Pat. No. 7,873,
219 to Richard Mark Friedhoff, entitled Differentiation Of
Illumination And Reflection Boundaries and U.S. Pat. No.
7,672,530 to Richard Mark Friedhoff et al., entitled Method
And System For Identifying Illumination Flux In An Image
(hereinafter the Friedhoft Patents).

SUMMARY OF THE INVENTION

The present invention provides a method and system com-
prising image processing techniques that utilize spatio-spec-
tral information relevant to an image, derived from multiple
sets of selectively varied representations of the image to accu-
rately and correctly identify illumination and material aspects
of the image. In an exemplary embodiment of the present
invention, a soft, weighted constraint imposed upon image
locations temporally spaced in frames of a video, can be used
to provide a more accurate segregation of an image into
intrinsic material reflectance and illumination components.
The constraint is arranged to constrain all color band varia-
tions between the image locations into one integral constrain-
ing relationship.

In a first exemplary embodiment of the present invention,
an automated, computerized method is provided for process-
ing an image. According to a feature of the present invention,
the method comprises the steps of providing image files each
depicting a frame of a video, each image file depicting an
image, including image locations, in a computer memory,
selecting image locations 1 and j, the image locations i from a
firstimage filek and j from a second image file k—n, k-n being
temporally spaced n frames from image file k in the video,
setting a temporal constraint between the image locations
according to a log color space equation: w”, *(Mi-Mj)=w",*
(o, Vy#+(1-a,)B,), wherein Mi and Mj are log color space
values for the material reflectance component of the image
locations i and j, respectively, V,; is a difference vector to
provide a gradient magnitude defined by V, =I,~1, where I,
and I, are log color space values corresponding to color values
recorded in the image file, for the color and intensity of the
selected image locations i and j, respectively, B, is a compo-
nent of V,; not aligned with illumination change between the
selected image locations and is a vector defined by B,=V -
(V;N), where N is a BIDR normal, o is a scalar value based
upon a smooth scalar function o that varies from O to 1, as a
function of a degree of change expressed by 1,1, correspond-
ing to one of an illumination change or a material reflectance
change, and w”; is a temporal constraint confidence weight
calculated as w”,=s,*w,, wherein w,; is a constraint weight
and s,, is a scaling factor determined as a function of the n
frames between the image file k and the image file k—-n frame
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of the video and solving the log color space equation to
identify an intrinsic component of the selected image loca-
tions.

In a second exemplary embodiment of the present inven-
tion, a device is provided. The device comprises a computer
and a memory storing image files each depicting a frame of a
video, each image file containing an image having image
locations. According to a feature of the present invention, the
computer is arranged and configured to execute a routine to
selectimage locations iand j, the image locations i from a first
image file k and j from a second image file k-n, k-n being
temporally spaced n frames from image file k in the video, set
a temporal constraint between the image locations according
to a log color space equation: w”, *(Mi-Mj)=w" *(a,V, +
(1-0,)B,), wherein Mi and Mj are log color space values for
the material reflectance component of the image locations i
and j, respectively, V,; is a difference vector to provide a
gradient magnitude defined by V,=1,-1, where I, and I, are log
color space values corresponding to color values recorded in
the image file, for the color and intensity of the selected image
locations i and j, respectively, B, is a component of V,; not
aligned with illumination change between the selected image
locations and is a vector defined by B, =V, ~(V,N), where N
is a BIDR normal, a.; is a scalar value based upon a smooth
scalar function « that varies from 0 to 1, as a function of a
degree of change expressed by I,-1; corresponding to one of
an illumination change or a material reflectance change, and
w” . 1s a temporal constraint confidence weight calculated as
w”,=s,*w,, wherein w, is a constraint weight and s, is a
scaling factor determined as a function of the n frames
between the image file k and the image file k—-n frame of the
video and solve the log color space equation to identify an
intrinsic component of the selected image locations.

In a third exemplary embodiment of the present invention,
a computer program product is provided. The computer pro-
gram product is disposed on a non-transitory computer read-
able media, the product including computer executable pro-
cess steps operable to control a computer to: receive image
files each depicting a frame of a video, each image file depict-
ing an image having image locations, select image locations i
and j, the image locations i from a first image file k and j from
a second image file k-n, k-n being temporally spaced n
frames from image file k in the video, set a temporal con-
straint between the image locations according to a log color
space equation: w" *(Mi-Mj)=w",*(o,V +(1-0,,)B,),
wherein Mi and Mj are log color space values for the material
reflectance component of the image locations i and j, respec-
tively, V,; is a difference vector to provide a gradient magni-
tude defined by V,=I,-1, where 1, and [, are log color space
values corresponding to color values recorded in the image
file, for the color and intensity of the selected image locations
iand j, respectively, B,; is a component of V,; not aligned with
illumination change between the selected image locations
and is a vector defined by B, =V, ~(V,N), where Nis a BIDR
normal, @, is a scalar value based upon a smooth scalar
function o that varies from 0 to 1, as a function of a degree of
change expressed by [,-1, corresponding to one of an illumi-
nation change or a material reflectance change, and w”,; is a
temporal constraint confidence weight calculated as
w”,=s,*w,, wherein w, is a constraint weight and s, is a
scaling factor determined as a function of the n frames
between the image file k and the image file k—-n frame of the
video and solve the log color space equation to identify an
intrinsic component of the selected image locations.

In accordance with yet further embodiments of the present
invention, computer systems are provided, which include one
or more computers configured (e.g., programmed) to perform
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the methods described above. In accordance with other
embodiments of the present invention, computer readable
media are provided which have stored thereon computer
executable process steps operable to control a computer(s) to
implement the embodiments described above. The auto-
mated, computerized methods can be performed by a digital
computer, analog computer, optical sensor, state machine,
sequencer or any device or apparatus that can be designed or
programmed to carry out the steps of the methods of the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system arranged
and configured to perform operations related to images.

FIG. 2 shows an nxm pixel array image file for an image
stored in the computer system of FIG. 1.

FIG. 3a is a data flow block diagram for an image segre-
gation operation performed according to an exemplary
embodiment of the present invention including a set of selec-
tively varied representations of the image of the image file of
FIG. 2.

FIG. 3b shows a graphic representation of a scale-spaced
pyramid as the set of selectively varied representations of
FIG. 3a.

FIG. 3¢ is a data flow block diagram for an image segre-
gation operation according to a further exemplary embodi-
ment of the present invention including multiple sets of selec-
tively varied representations of the image of the image file of
FIG. 2.

FIG. 3d is a flow chart for identifying blend pixels in an
image.

FIG. 3e is a flow chart showing a shadow boundary detec-
tion step, from the flow chart of FIG. 3d.

FIG. 3fis a flow chart for a texture detection step, from the
flow chart of FIG. 3d.

FIG. 3g is a flow chart for a color flow vector step of FIG.
3c.

FIG. 4 is a functional block diagram for an image segrega-
tion system architecture for performing the data flow of FI1G.
3a, implemented in the computer system of FIG. 1, according
to a feature of the present invention.

FIG. 5 shows a graphical user interface for use in connec-
tion with an implementation of the image segregation system
architecture feature of the present invention.

FIG. 6a is a flow chart for identifying Type C token regions
in the image file of FIG. 2a, according to a feature of the
present invention.

FIG. 6b is an original image used as an example in the
identification of Type C tokens.

FIG. 6c shows Type C token regions in the image of FIG.
6b.

FIG. 6d shows Type B tokens, generated from the Type C
tokens of FIG. 6¢, according to a feature of the present inven-
tion.

FIG. 7 is a flow chart for a routine to test Type C tokens
identified by the routine of the flow chart of FIG. 64, accord-
ing to a feature of the present invention.

FIG. 8 is a flow chart for constructing Type B tokens via an
arbitrary boundary removal technique, according to a feature
of the present invention.

FIG. 9 is a flow chart for creating a token graph, containing
token map information, according to a feature of the present
invention.

FIG. 10 is a flow chart for constructing Type B tokens via
an adjacent planar token merging technique, according to a
feature of the present invention.
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FIG. 11 is a flow chart for generating Type C tokens via a
local token analysis technique, according to a feature of the
present invention.

FIG. 12 is a flow chart for constructing Type B tokens from
Type C tokens generated via the local token analysis tech-
nique of FIG. 11, according to a feature of the present inven-
tion.

FIG. 13 is a graphic representation of a log color space
chromaticity plane according to a feature of the present inven-
tion.

FIG. 14 is a flow chart for determining a list of colors
depicted in an input image.

FIG. 15 is a flow chart for determining an orientation for a
log chromaticity space, according to a feature of the present
invention.

FIG. 16 is a flow chart for determining log chromaticity
coordinates for the colors of an input image, as determined
through execution of the routine of FIG. 14, according to a
feature of the present invention.

FIG. 17 is a flow chart for augmenting the log chromaticity
coordinates, as determined through execution of the routine
of FIG. 16, according to a feature of the present invention.

FIG. 18 is a flow chart for clustering the log chromaticity
coordinates, according to a feature of the present invention.

FIG. 19 is a flow chart for assigning the log chromaticity
coordinates to clusters determined through execution of the
routine of FIG. 18, according to a feature of the present
invention.

FIG. 20 is a flow chart for detecting regions of uniform
reflectance based on the log chromaticity clustering accord-
ing to a feature of the present invention.

FIG. 21 is a representation of an [A] [x]|=[b] matrix rela-
tionship according to an exemplary embodiment of the
present invention.

FIG. 22 is a representation of an [A] [x]|=[b] matrix rela-
tionship according to a further exemplary embodiment of the
present invention.

FIG. 23 is a flow chart for a weighted constraint according
to a feature of the present invention.

FIG. 24 shows a graph for a sigmoid function indication of
a weight, according to a feature of the present invention.

FIG. 25a shows spaced locations in one level of the pyra-
mid of FIG. 3b.

FIG. 25b shows spaced locations between temporally
spaced frames of a video.

FIGS. 264 and b show graphs for scaled threshold values in
each of angle metric and distance metric modes, respectively.

FIG. 27 is a flow chart for a simple mean method for
creating a scale-spaced pyramid according to a feature of the
present invention.

FIG. 28 is a graphic representation of pixel locations at
different scales of a scale-spaced pyramid, as shown in FIG.
3b.

FIG. 29 is a flow chart for a temporal constraint.

FIG. 30 is a flow chart for an anchor constraint.

FIG. 31 is a functional block diagram for a service provider
component for use in the image segregation system architec-
ture of FIG. 4.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Referring now to the drawings, and initially to FIG. 1, there
is shown a block diagram of a computer system 10 arranged
and configured to perform operations related to images. A
CPU 12 is coupled to a device such as, for example, a digital
camera 14 via, for example, a USB port. The digital camera
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14 operates to download images stored locally on the camera
14, to the CPU 12. The CPU 12 stores the downloaded images
in a memory 16 as image files 18. The image files 18 can be
accessed by the CPU 12 for display on a monitor 20, or for
print out on a printer 22.

Alternatively, the CPU 12 can be implemented as a micro-
processor embedded in a device such as, for example, the
digital camera 14 or a robot. The CPU 12 can also be equipped
with a real time operating system for real time operations
related to images, in connection with, for example, a robotic
operation or an interactive operation with a user.

As shown in FIG. 2, each image file 18 comprises an nxm
pixel array. Each pixel, p, is a picture element corresponding
to a discrete portion of the overall image. All of the pixels
together define the image represented by the image file 18.
Each pixel comprises a digital value corresponding to a set of
color bands, for example, red, green and blue color compo-
nents (RGB) of the picture element. The present invention is
applicable to any multi-band image, where each band corre-
sponds to a piece of the electro-magnetic spectrum. The pixel
array includes n rows of m columns each, starting with the
pixel p (1,1) and ending with the pixel p(n, m). When display-
ing or printing an image, the CPU 12 retrieves the correspond-
ing image file 18 from the memory 16, and operates the
monitor 20 or printer 22, as the case may be, as a function of
the digital values of the pixels in the image file 18, as is
generally known.

According to a feature of the present invention, in an image
process, the CPU 12 operates to analyze and process infor-
mation, for example, the RGB values of the pixels of an image
stored in an image file 18, to achieve various objectives, such
as, for example, a segregation of illumination and material
aspects of a scene depicted in the image of an image file 18, to
generate corresponding intrinsic images. The intrinsic
images include, for example, an illumination image, to cap-
ture the intensity and color of light incident upon each point
on the surfaces depicted in the image, and a material reflec-
tance image, to capture reflectance properties of surfaces
depicted in the image (the percentage of each wavelength of
light a surface reflects). The separation of illumination from
material in the intrinsic images provides the CPU 12 with
images optimized for more effective and accurate further
processing in such applications as computer vision.

To that end, FIG. 3a shows a data flow diagram for an
image segregation operation performed according to an
exemplary embodiment of the present invention. In block
1000, an image file 18 is selected and input to the CPU 12. In
block 1002, the CPU 12 operates to form a set of selectively
varied representations of the image, depicted in image files
18a, 185, . . . 18n, from the selected image file 18. The
variations among the representations can be based upon any
preselected spacial, spectral and/or temporal groupings of the
original image. The variations are selected so as to provide
image representations most suitable for efficient and accurate
analysis of illumination and material aspects of the image.

In one preferred embodiment of the present invention,
computer operation for illumination and material image seg-
regation can be performed at a relatively coarse scale repre-
sentation of the image, and then used to constrain a solution at
a relatively finer scale resolution. By enforcing a segregation
that is consistent across different scales of resolution, perfor-
mance of a segregation operation is not only more speedy and
efficient, but also more accurate.

In another preferred embodiment, a segregation of illumi-
nation and material aspects of the image is selectively divided
among representations at differing scales of image resolution.
Different features of a scene depicted in an image can have

10

15

20

25

30

35

40

45

50

55

60

65

6

different intrinsic scales. For example, edges in an image have
an intrinsic scale most effectively analyzed at a fine scale of
resolution, while non-edged regions, such as regions of uni-
form material, can be accurately analyzed at relatively coarse
scales of resolution. Thus, an image is divided by edge and
non-edge regions, segregating the edge regions at a fine scale
of resolution, and the remaining non-edge regions at a rela-
tively coarse scale of resolution. More generally, pixels of the
image (or other preselected regions of the image) can each be
divided according to the intrinsic scale of the respective pixel,
and processed at a representation of the image at an appro-
priate scale. The division of segregation operations in this
manner provides a sequence of simple solution systems,
rather than one relatively large complex system to solve.

Accordingly, for example, in one exemplary embodiment
of the present invention, the CPU 12 can form multi-resolu-
tion representations such as a scale-spaced pyramid of repre-
sentations of the image. As shown in FIG. 35, in a scale-
spaced pyramid, the set of image files 18a, b, ¢ . . . n, are
generated, each at a different scale of resolution relative to the
resolution of the original image, from a finest resolution
(defined as the resolution of the original image in image file
18) to relatively coarser resolutions, at each upper level of the
pyramid. Each of image files 18, 184, . . . 187 of FIG. 3bis an
array of pixels, as generally shown in FIG. 2. Image file 184
is a coarser resolution version of the original image file 18,
and image file 185 is a coarser resolution version of image file
184, and so on. For example, as illustrated in FIG. 35, pixels
P(5,3),P(6,3),P(5,4) and P(6, 4) of fine resolution image file
18 map to, and therefor correspond to, a single pixel, P,(3, 2)
in the relatively coarse resolution image file 18a. A down-
sampling scale D indicates the difference in scale between
levels of the pyramid such that a higher level, low resolution
representation of the image has 1/D? fewer pixels than the
lower, high resolution level.

A scale-spaced pyramid(s) is formed via well known Gaus-
sian and/or Laplacian pyramid formation techniques. In a
Gaussian pyramid, the original image file 18 is convolved
with a Gaussian kernel g, for a low pass filtered, subsampled
version of the original image (image file 18a), having a cut off
frequency set by the parameter o. A full Gaussian pyramid is
formed when each coarse scale (e.g. image file 18a) is con-
volved with the Gaussian kernal to form a next level (image
file 185), and so on (to image file 18#). A Laplacian pyramid
provides a series of bandpass filtered versions of the original
image, wherein each scale of the pyramid corresponds to a
different band of image frequencies.

If a series of selectively varied images represented by
image files 18, 18a, . . . 18# is stated as a Gaussian pyramid of
low passed filtered versions of the original image, and
expressed by original image iy, and scales i, 15, . . . 1,4
respectively, then any level of the pyramid is related to a
downsampled next lower (finer) level by: i, =|, (g*i,,., ), where
| denotes a downsampling, g represents a low pass filter, such
as, for example, the Gaussian low pass filter and * denotes a
spatial convolution.

For a Laplacian pyramid, in the series of images repre-
sented by image files 18, 184, . . . 18n, each level of the
pyramid 1, can be expressed in terms of a difference between
levels of the Gaussian pyramid: 1, =i,~11,,, ;, where I denotes
upsampling.

Moreover, starting with a multiplicative model for the
image: [=MxL, where [ is the original image, M is the mate-
rial component of the image and L is the illumination com-
ponent, it can be shown that each level of the pyramid can be
decomposed into a material pyramid and an illumination
pyramid. For an additive model, the log color values are log
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I=log M+log L. In terms of the Gaussian pyramid, the decom-
position into material and illumination components can be
expressed as: g *log [=g_ *log M+g_*log L.

In block 1004, the CPU 12 operates to perform an image
segregation operation on at least one of the representations of
the pyramid, for example, original image file 18 and image
file 184, to generate intrinsic images including, for example,
each of an illumination image and a material reflectance
image for each selected scale of the image. Each of'the intrin-
sic images corresponds to the image depicted at the resolution
scales of image file 18 and image file 18a, respectively.
According to a feature of the present invention, the image
segregation operation performed by the CPU 12 at each scale
of resolution, is implemented according to a spatio-spectral
operator/constraint/solver model to identify the illumination
and material reflectance components of the original image or
any representation of the original image.

FIG. 3¢ illustrates a further exemplary embodiment of the
present invention. As shown, the concept of selectively vary-
ing the image file 18, as illustrated in FIGS. 3a & b, is
implemented in a manner to organize image representations
based upon multiple, different preselected image character-
istics, for example, spacial, spectral and temporal groupings
of the original image. In an exemplary embodiment of the
present invention, an input image 18, as shown in FIG. 2, is
pre-processed (block 1008). The pre-processing can include
such optional operations as the correction of chromatic aber-
ration according to the techniques taught in U.S. Pat. No.
7,865,031, and a step to linearize image data, for more accu-
rate processing.

Thereafter, an image pyramid, as shown in FIG. 35 is
created, for example, using either a Gaussian or Laplacian
pyramid formation technique, as described above (blocks
1010, 1012). According to a further exemplary embodiment
of the present invention, blocks 1010 and 1012 are imple-
mented using a simple mean method. Each of the known
Gaussian or Laplacian pyramid formation techniques for cre-
ating the pyramids, as described above, tend to average or blur
colors from a high resolution to the next, lower resolution
level. In some instances, an image analysis, according to a
feature of the present invention, relies upon purity of color
values for an accurate measure of color change. In those
instances, a pyramid arrangement that preserves the purity of
color from scale to scale is needed to insure the accuracy of
solve results. Thus, according to a feature of the present
invention, to increase accuracy in a solve based upon color
change, a simple mean method, as described below with
reference to FIG. 27, is used to assure color purity between
the pyramid levels. Each scale representation of the image 18,
18a, . . . 18n, is then processed to divide each image repre-
sentation into Type C tokens, as will be described in detail,
below with reference to FIG. 6a (blocks 1014, 1016).

As will be discussed in detail, a Type C token comprises a
connected image region of similar image properties among
the contiguous pixels of the token, for example, similar color
and intensity, where similarity is defined with respect to a
noise model for the imaging system used to record the image.
The use of Type C tokens improves processing efficiency.

According to a feature of the present invention, after the
pre-processing of block 1008, the CPU 12 is operated to
create, as a second grouping of pixels, a blend pixel image
from the image depicted in the input image file 18 (block
1018). Blend pixels are generally positioned at material
boundaries, and depict a blend of the different colors of the
adjacent different materials forming the boundary. As such,
each blend pixel depicts a color that does not actually exist in
the scene depicted in the image file 18, and thus, can degrade
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the accuracy of image processing to segregate the image file
18 into corresponding intrinsic illumination and material
reflectance images.

Referring now to FIG. 34, there is shown a flow chart for
identifying blend pixels in an image. An original image file 18
is processed to identify Type C tokens, for example, accord-
ing to the process steps shown in FIG. 64, as will be described
below (block 1100). In step 1102, the CPU 12 is operated to
examine each Type C token, to identify all one dimensional
(1-D) Type C tokens (that is a Type C token consisting of a
single string of pixels). This is because tokens consisting of
blend pixels are created by a mixing of different material
colors at a material boundary, and tend to be one dimensional.

Ifa current Type C token being examined by the CPU 12 is
nota 1-D token, the token is not labeled as a blend pixel token
(block 1104). If the current Type C token is a 1-D token, the
token is added to a list of 1-D tokens, and the CPU 12 pro-
ceeds to step 1106. In step 1106, the CPU 12 operates to
examine the current 1-D Type C token to determine if the
token is on a shadow boundary caused by an illumination
change, or still a candidate for a material based blend pixel
token. FIG. 3e shows a flow chart for each of a distance-based
method and an angle-based method, for executing a shadow
boundary analysis on a candidate 1-D token.

In step 1200, an indication is set, for example, by a user, to
indicate execution by the CPU 12 of either the distance-based
or angle-based methods. If step 1200 is set to the distance-
based method, the CPU 12 proceeds to the distance-based
method 1202. In the distance-based method 1202, the CPU
12, in series or parallel, computes each of a log chromaticity
image (1204) and a mean similarity weights s, (1206).

A method and system for separating illumination and
reflectance using a log chromaticity image is disclosed in
U.S. Pat. No. 7,596,266, which is hereby expressly incorpo-
rated by reference. In step 1204, the CPU 12 executes the
methods taught in U.S. Pat. No. 7,596,266, to compute an
illumination invariant log chromaticity image based upon the
image depicted in the image file 18, being processed. The
processing can also include the determination of a BIDR
normal (block 1024), as required for the computation of the
log chromaticity image, according to the methods described
in U.S. Pat. No. 7,596,266.

If the candidate 1-D token is caused by an illumination
change, a corresponding gradient for each pixel in the candi-
date 1-D token will have a large value in the original image of
the image file 18. However, the gradients for the pixels of the
candidate 1-D token will have a relatively small value in the
corresponding illumination invariant, log chromaticity
image.

According to the distance-based method feature of the
present invention, the gradient relationship, as between the
original image and the corresponding, illumination invariant
log chromaticity image, is used to detect whether the candi-
date 1-D token is caused by a shadow. To that end, in step
1206, the CPU 12 computes weighted variance values (V) for
tokens in a small neighborhood on either side of a candidate
1-D token, as follows: V=%, =].:1sij(Iij—M)z/ZNi =155
where N is the selected size of the neighborhood used to
perform the analysis, M is the mean variance for a token i,j
relative to the small neighborhood defining a potential fully lit
and fully shadowed regions around the candidate 1-D token,
L, is the recorded color and intensity for the respective token
of the local neighborhood, and s; is a similarity weight,
expressed as follows: s;;« 1/max (minVal, (Iij—M)z) with min-
Val being set at a value to avoid division by zero or a value
close to zero.
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In steps 1208 and 1210, respectively, the CPU 12 computes
weighted variances in each of the log chromaticity image,
V s10r and the original image, V 5, of the image file 18 for
the selected small neighborhood surrounding the candidate
1-D token.

In step 1212, the CPU 12 compares V oz, to a first thresh-
old value, thres1 and compares V. to a second threshold
value, thres2. If' V o, is greater than the thres1, a threshold
set to indicate a relatively large change in gradient values for
the pixels of the candidate 1-D token, in the original image,
and Vg, 1s less than thres2, a threshold set to indicate a
relatively small change in gradient values for the pixels of the
candidate 1-D token in the illumination invariant log chroma-
ticity image, then the CPU 12 finds an indication for a token
at a boundary caused by an illumination change, and returns
an indication of not a blend pixel token (step 1214). If the
opposite is true, the CPU 12 returns an indication of a blend
pixel token candidate (step 1216).

If step 1200 is set to the angle-based method, the CPU 12
proceeds to the angle-based method 1220. In step 1222, the
CPU 12 operates to generate N images, each based upon the
image depicted in the image file 18, and each of the N images
being generated with a different gaussian blur sigma, sigma 1
to sigma N, respectively. In steps 12244a to 1224n, the CPU 12
computes an angle between a gradient for the candidate 1-D
token, in each one of the blurred versions of the image, and the
BIDR normal (1024).

As fully described in U.S. Pat. No. 7,596,266, a bi-illumi-
nant, dichromatic reflection (BIDR) model predicts that dif-
fering color measurement values fall within a cylinder in
RGB space, from a dark end (in shadow) to a bright end (lit
end), along a positive slope, when the color change is due to
an illumination change forming a shadow over a single mate-
rial of a scene depicted in the image. The BIDR normal
corresponds to the orientation in, for example, the RGB color
space, of the positive slope for the color variation caused by
the illumination change across the single material. Accord-
ingly, if the candidate 1-D token has a gradient that has an
orientation in the color space that is close to the orientation of
the BIDR normal (small angle), it is likely formed at a shadow
boundary, rather than at a material boundary.

In step 1226, the CPU 12 operates to identify the minimum
angle found in steps 1224a to 1224n, Ang,,,,,,. In step 1228, the
CPU 12 compares Ang,,,,, to a threshold value. The threshold
is set at a value to reflect an angle that shows substantial
alignment to the BIDR normal, and thus, color change due to
illumination. Thus, if Ang,, .. is less than the threshold, the
CPU 12 returns an indication of not a blend pixel token (step
1214). If the opposite is true, the CPU 12 returns an indication
of a blend pixel token candidate (step 1216).

In alternative embodiments of the present invention,
instead of a minimum angle in step 1226, the CPU 12 iden-
tifies a different statistical metric, such as, for example, a
median or variance. Also, instead of a hard, fixed threshold, a
soft threshold function is implemented.

When the CPU 12 enters return step 1214, the CPU then
proceeds to step 1104 (FIG. 34), and removes the candidate
1-D token from the list of 1-D tokens. When the CPU 12
enters a return step 1216, the CPU 12 proceeds to step 1108
(FIG. 3d). In step 1108, the CPU 12 operates to examine the
current 1-D Type C token to determine if the token is a texture
token, or is in fact, a material based blend pixel token. FIG. 3
is a flow chart for a texture detection step, (step 1108 from the
flow chart of FIG. 3d).

In step 1300, the CPU 12 receives the candidate 1-D token,
from the shadow analysis routine (1106). In step 1302, the
CPU 12 operates to calculate the centroid of the candidate
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1-D token. In steps 1304 and 1306, the CPU 12 operates to
calculate the average color for the pixels of the candidate 1-D
token, and compares that color to pixels of a pre-selected
neighborhood surrounding the candidate 1-D token, to deter-
mine the number of pixels in the neighborhood, Ns, that
match the color of the candidate 1-D token.

A texture in an image consists of a repeating pattern of
colors. If the candidate 1-D token is within a texture, rather
than at a material boundary, Ns will have a value greater than
athreshold value set at a level that reflects a repeating pattern
on either side of the candidate token, as opposed to two
different materials at a material boundary. If Ns is greater than
the threshold, thres, the CPU 12 returns an indication of a
texture token (step 1310). If Ns is lower than the threshold, the
CPU 12 returns an indication of a blend pixel token (step
1312).

When the CPU 12 enters return step 1310, the CPU then
proceeds to step 1104 (FIG. 3d), and removes the candidate
1-D token from the list of 1-D tokens. When the CPU 12
enters a return step 1312, the CPU 12 proceeds to step 1110
(FIG. 3d).

In step 1110, the CPU 12 marks the candidate 1-D token as
ablend pixel token in the 1-D token list. After executing steps
1100-1110 of the routine of FIG. 34 for each token of the
image file 18, being processed, the CPU 12 proceeds to step
1112. The CPU applies the list of blend tokens identified
through execution of the routine of FIG. 34, to create a blend
pixel mask (1114). The blend pixel mask completes block
1018 (FIG. 3¢) and provides a representation of the image
depicted in the image file 18, the representation set by the
CPU 12 to depict the recorded intensity values, for example,
RGB values, for each pixel location in the image identified as
a blend pixel, with a nil value at each other pixel location.

Referring once again to FIG. 3¢, in block 1020, the CPU 12
operates to create a scale-spaced pyramid of the blend pixel
representation of the image, executing the same routines
described above used to create the scale-spaced pyramid for
the original image (step 1012).

As noted above, a BIDR Model predicts that differing color
measurement values fall within a cylinder in RGB space,
from a dark end (in shadow) to a bright end (lit end), along a
positive slope, when the color change is due to an illumination
change forming a shadow over a single material of a scene
depicted in the image. The BIDR normal corresponds to the
orientation in, for example, the RGB color space, of the
positive slope for the color variation caused by the illumina-
tion change across the single material. BIDR normal infor-
mation can be used to define constraints between, for
example, Type C tokens, as a basis for segregating the illu-
mination and material reflectance components of an image, as
will be described.

According to a feature of the present invention, BIDR
normal information is identified for each pixel in an image
depicted in an image file 18. U. S. Patent Publication US
2014/0050395 teaches various techniques to identify spa-
tially varying BIDR normals, for use in an image process.
One technique taught in U. S. Patent Publication US 2014/
0050395 calculates a BIDR normal information value for
each pixel of the image file 18. Each normal information
value is associated with corresponding pixel positions for the
pixels used to calculate the respective normal, N, for example,
from among pixels p(1, 1) to p(n, m) of an image file 18 being
processed, as shown in FIG. 2. For example, a user can enter
a set of lit-dark pairs that each include a patch of lit pixels and
a corresponding patch of dark pixels, from a same material
(block 1022). In an exemplary embodiment of the present
invention, a user designates, for example, via a touch screen
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action, one or more sets of lit-dark pairs of pixel blocks, the
pairs each corresponding to lit and shadowed regions of a
same material, respectively, depicted in the image of the
image file 18 being processed. Each pixel block includes, for
example, an nxn array of pixels.

According to a feature of the present invention, the CPU 12
is operated to calculate a BIDR normal information value for
each pixel of an image file, and create a BIDR normal image,
with each pixel location, as shown, for example, in FIG. 2,
indicating a respective BIDR normal information value, as
calculated by the CPU 12 as a function of the user-selected
lit-dark pairs, according to the teachings of U. S. Patent Pub-
lication US 2014/0050395 (block 1024). In alternative exem-
plary embodiments of the present invention, BIDR normal
information values can be calculated based upon an automatic
calculations, as also taught in U. S. Patent Publication US
2014/0050395.

In step 1026, the CPU 12 operates to create a scale-spaced
pyramid of the BIDR normal representation of the image, by
mapping the BIDR normal information values from one reso-
Iution to another. In the creation of the scale-spaced pyramid
for the image file 18, as described above (step 1012), there is
amapping of pixels, from one resolution to the next resolution
of'the pyramid, as for example, via the color purity routine of
FIG. 27. The mapping is used to map a pixel in a lower
resolution to a corresponding pixel, in the next higher reso-
Iution of the pyramid.

According to a feature of the present invention, another
grouping of the image is created when the image file 18 is a
frame of'a video recording. In the case of a video, the CPU 12
operates to calculate temporal information relevant to pixel
locations. The temporal information can also be used to
define constraints as a basis for segregating the illumination
and material reflectance components of an image, as will be
described. In an exemplary embodiment of the present inven-
tion, for the temporal information, the CPU 12 computes
color flow vectors as a function of Type C tokens identified in
the image file 18 being processed, and an image file 18' that is
the previous frame of the video (block 1028). F1G. 3gis a flow
chart for the color flow vector step of FIG. 3c.

In some videos, the camera used to record the scene, and
the scene itself, are static, or depict slow moving objects. In
other videos, the camera and/or objects in the scene undergo
rapid movement. When the video depicts rapid motion, a
rough estimate of motion is required for further processing. A
known optical flow algorithm can be executed by the CPU 12
to provide the rough estimate of motion. In step 1400, a user
can select whether the CPU 12 executes an optical flow algo-
rithm. In an alternative exemplary embodiment, an automatic
selection of optical flow can be made based upon an initial
estimate of scene motion. If yes, the CPU 12 executes the
optical flow algorithm to calculate optical flow information
between current and previous frames of the video (k and k-1,
corresponding to the image file 18 and the image file 18',
respectively) (block 1402).

In step 1404, the CPU 12 uses the rough estimate of the
optical flow information to ascertain the approximate loca-
tion of a selected Type C token Tk, from image file 18 (frame
k), in the image file 18' (frame k-1). In step 1406, the CPU 12
shifts a center of a search field within the previous frame k-1
to the location indicated by the optical flow information.

When the user selects not to use the optical flow informa-
tion, as in the case of a video with static or slow moving
objects, the CPU 12 executes step 1408. In step 1408, the
CPU 12 centers the search location in frame k-1 based upon
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thelocation of the token Tk in the frame k. The use of the same
location should be accurate due to the slow moving objects or
static conditions of the video.

In step 1410, the CPU 12 locates token Tk-1, the token in
the search location of frame k-1, that is the closest match to
token Tk. In step 1412, the CPU 12 compares the color
difference between Tk and Tk-1 to a threshold value. The
threshold is set to a value, for example, comparable to the
noise variation of the equipment used to record the video. If
the color difference is not less than the threshold, the CPU 12
does not assign any color flow vector to the token (step 1414).
If the color difference is less than the threshold, the CPU 12
proceeds to step 1416.

In step 1416, due to the close similarity of color values
between the tokens, Tk and Tk-1, as established in step 1412,
the CPU 12 computes a color flow vector for the movement of
the token, from frame k-1 to frame k. The color flow vector is
expressed as the difference in x,y positions of the centroid of
the tokens Tk and Tk-1, relative to an x,y frame of reference
placed upon the P(1, 1) to P(N, M) pixel array, as shown in
FIG. 2. Upon completion of step 1416, the CPU 12 assigns the
computed color vector for the current Tk, Tk-1 pair (step
1418).

Referring once again to FIG. 3¢, to complete step 1028, the
CPU 12 executes the routine of FIG. 3g for each token of the
frame k, resulting in a listing of all tokens assigned a color
flow vector and the corresponding color flow vectors. The
CPU 12 then creates an image representation, with a com-
puted color flow vector at each pixel corresponding to the
centroid of each token analyzed and assigned a color flow
vector during the execution of the routine of FIG. 3g.

In step 1030, the CPU 12 operates to create a scale-spaced
pyramid of the color flow vector representation of the image,
by mapping the color flow vectors from one resolution to
another, for example, according to the mapping from FIG. 27.
In the case of color flow vectors, the value of the color vector
mapped from a higher resolution is divided by the amount of
reduction in resolution, from one level of the pyramid to the
next, lower resolution level. For example, if D pixels of a
higher resolution level correspond to one pixel at the lower
resolution of the next level, the color flow vector value is
divided by a factor of 1/D. Again, the pixel mapping can be
implemented according to the color purity routine of FIG. 27,
as will be described.

According to a feature of the present invention, a user can
indicate various parameters and/or information relevant to the
image process. For example, a user can enter a proxy scale
(block 1032). The proxy scale can limit the processing to a
certain resolution, less than the full resolution level of the
pyramid. This can be used to increase the speed of execution,
particularly when the original image is large. The proxy set-
ting can be used to obtain fast results as a preview, before full
processing. A user can also specify parameters relevant to the
tokenization process (block 1034). In addition, a user can, via
a touch screen action, draw scribble lines on a display of the
image. The scribbles can include, for example, a fully lit
scribble to indicate an area of the image that is fully illumi-
nated, a same reflectance scribble, to indicate an image region
of a same material, and a same illumination scribble, to indi-
cate a region of the image that is at the same level of illumi-
nation. The scribbles supply accurate information for the
CPU 12 to impose on constraints.

In steps 10384 to 10384, the CPU 12 operates to create
constraints based upon the set of pyramids created in steps
1016,1020,1026 and 1030. The constraints are concatenated
in a matrix array, for example, a matrix equation of the form
[A] [x]=[b], as shown, for example, in FIGS. 21 and 22 (block
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1040). The CPU 12 operates to solve the matrix equation
(block 1042), and after performing optional post processing,
as will be described in more detail (block 1044), outputs each
of a material reflectance intrinsic image (1046) and an illu-
mination intrinsic image (1048). The material reflectance
image captures the reflectance properties of surfaces depicted
in the image (the percentage of each wavelength of light a
surface reflects). The illumination image captures the inten-
sity and color of light incident upon each point on the surfaces
depicted in the image.

All of the constraints of steps 10384 to 10384, and the
arrangement of the matrix equation [A] [x]=[b], are computed
pursuant to a spatio-spectral operator/constraint/solver
model for an image segregation, according to the present
invention. As shown in FIG. 34, in step 1004 the image file 18,
and/or any selected one or more of the alternative represen-
tations image files 184a-n, are subject to an image segregation.
As shown in FIG. 3¢, multiple other groupings of the image,
for example, blend pixels, BIDR normals and color flow
vectors, can be created by the CPU 12 to supplement the
image segregation.

A fundamental observation underlying a basic discovery of
the present invention, is that an image comprises two compo-
nents, material reflectance and illumination. All changes in an
image are caused by one or the other of these components.
Spatio-spectral information is information relevant to con-
tiguous pixels of an image depicted in an image file 18, such
as spectral relationships among contiguous pixels, in terms of
color bands, for example RGB values of the pixels, and the
spatial extent of the pixel spectral characteristics relevant to a
characteristic of the image, such as, for example, a single
material depicted in the image or illumination effecting the
image. The BIDR model discussed above is an example of
spatio-spectral information, predicting color change among
contiguous pixels across a single material.

As recognized by the BIDR model, the illumination
includes an incident illuminant and an ambient illuminant.
The spectra for the incident illuminant and the ambient illu-
minant can be different from one another. Thus, a spectral
shift is caused by a shadow, i.e., a decrease of the intensity of
the incident illuminant. The spectral shift can cause a variance
in color of material depicted in the scene, from full shadow,
through the shadow penumbra, to fully lit. Pursuant to a
feature of the present invention, spectral shift phenomena is
captured in spatio-spectral information, such as, for example
a BIDR normal. The spatio-spectral information includes a
spectral ratio: a ratio based upon a difference in color or
intensities between two areas of a scene depicted in an image,
which may be caused by different materials (an object edge),
an illumination change (illumination boundary) or both.

According to a further feature of the present invention,
spatio-spectral operators are generated to facilitate the image
segregation process performed in step 1004, for the segrega-
tion of illumination and material aspects of a scene depicted
in the retrieved image file 18, and any other representations of
the image, such as image file 18a. Spatio-spectral operators
comprise representations or characteristics of an image that
encompass spatio-spectral information usable in the process-
ing of material and illumination aspects of an image. The
spatio-spectral operators are subject to constraints that define
constraining spatio-spectral relationships between the opera-
tors, for input to a solver. The operators can be identified at
any one of the selectively varied representations of the origi-
nal image, and the constraints defined in terms of operators
within a single representation or between operators in differ-
ent representations.
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A constraint can be imposed among the different levels of
the pyramid, for example, to improve and expedite segrega-
tion at the finer scale (image file 18). To that end, as described
above, a segregation into illumination and material is first
quickly and efficiently performed by the CPU 12 (according
to the spatio-spectral operator/constraint/solver model,
described in detail below) for the relatively coarse image (for
example, image file 18a). Thereafter, for more consistent and
accurate results, during segregation at the finer scale, material
color at each local area of the relatively finer scale image (for
the material image generated for image file 18) is constrained
such that a weighted average of the color ata local area of the
fine scale equals the color of a corresponding local area of the
coarse scale.

Such a weighted average constraint can be expressed, in a
simplified analysis for a three pixel local area of the fine scale
representation, as follows: if the log intensities are related as:
12(x, y)=0.5%11(x, y)+0.25%1(x-1, y)+0.25%il(x+1, y),
wherein 12 (corresponding, for example, to the log of image
file 184) is a blurred version of i1 (corresponding to the log of
image file 18); then the log material values are related as:
m2(x, y)=0.5*m1(x, y)+0.25*m1(x-1, y)+0.25*m1(x+1, y),
wherein m1 and m2 are the material components ofil and i2,
respectively. Typically, the analysis is performed for a local
area of the fine scale that is larger than the area corresponding
to the pixel of the coarse scale representation, to avoid alias-
ing. For example, in pyramid wherein the coarse scale has
half the pixels of the fine scale, a 5x5 pixel square would be
used to calculate the weighted average for the color at the fine
scale, and then constrained to be the color of a single pixel in
the coarse scale representation.

In the exemplary embodiment of the present invention, the
solver includes a mathematical processing engine that oper-
ates to obtain an optimized solution for the generation of an
intrinsic image, such as a material image and/or an illumina-
tion image derived from the original image stored in the
retrieved image file 18 or any other representation of the
image, as a function ofthe constraining relationships between
the spatio-spectral operators.

Spatio-spectral operators include, for example, tokens,
token map information, log chromaticity representation val-
ues, X-junctions, BIDR model representations, a boundary
representation, and a texton histogram based pixel represen-
tation. Each of the spatio-spectral operators can be computed
and applied at the image file 18, and/or at any of the image
files 18a, . . . 18#, and any solution at any level can be related
to any solution at any other level each via the upsampling and
downsampling relationships described above.

Pursuant to a feature of the present invention, a token is a
connected region of an image wherein the pixels of the region
are related to one another in a manner relevant to identifica-
tion of image features and characteristics such as identifica-
tion of materials and illumination. The use of tokens recog-
nizes the fact that a particular set of material/illumination/
geometric characteristics of an image extends beyond a single
pixel, and therefore, while the image processing described
herein can be done on a pixel level, tokens expedite a more
efficient processing of image properties. The pixels of a token
can be related in terms of either homogeneous factors, such
as, for example, close correlation of color values among the
pixels, or nonhomogeneous factors, such as, for example,
differing color values related geometrically in a color space
such as RGB space, commonly referred to as a texture.

Exemplary embodiments of the present invention provide
methods and systems to identify various types of homoge-
neous or nonhomogeneous tokens for improved processing of
image files. The present invention utilizes spatio-spectral
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information relevant to contiguous pixels of an image
depicted in an image file 18, or contiguous pixels of any
selectively varied representation (image files 184, . . . 18#) to
identify token regions within the original image and/or within
any of the variations thereof. Such tokens identified in difter-
ent selectively varied representations of the image can be used
in, for example, the weighted average color constraint dis-
cussed above.

According to one exemplary embodiment of the present
invention, homogeneous tokens are each classified as either a
Type A token, a Type B token or a Type C token. A Type A
token is a connected image region comprising contiguous
pixels that represent the largest possible region of the image
encompassing a single material in the scene. A Type B token
is a connected image region comprising contiguous pixels
that represent a region of the image encompassing a single
material in the scene, though not necessarily the maximal
region corresponding to that material. A Type C token com-
prises a connected image region of similar image properties
among the contiguous pixels of the token, for example, simi-
lar color and intensity, where similarity is defined with
respectto anoise model for the imaging system used to record
the image. The weighted average constraint discussed above,
can be implemented at a Type C token level, constraining the
weighted average color of a token(s) at the fine scale to the
color of a corresponding token(s) at a coarse scale.

A linear token is a nonhomogeneous token comprising a
connected region of the image wherein adjacent pixels of the
region have differing color measurement values that fall
within a cylinder in RGB space, from a dark end (in shadow)
to a bright end (lit end), along a positive slope. The cylinder
configuration is predicted by the BIDR model, according to a
feature of the present invention, when the color change is due
to an illumination change forming a shadow (i.e. adecrease in
the intensity of the incident illuminant as the interplay
between the incident or direct illuminant and the ambient
illuminant in the illumination field) over a single material of
a scene depicted in the image.

For purposes of describing, identifying and using linear
tokens, the BIDR model can be stated as: I(x, y, z, 6, ¢, A)=cb
(A) 1d(M)yb+Ma (A) cb (1), where: I(x, vy, z, 0, ¢, A) is the
radiance of a surface point at (X, y, z) in the direction 6, ¢ for
the wavelength A, cb (1) is the geometry independent body
reflectance of a surface for the wavelength A, la (&) is the
incident illuminant for the wavelength A. yb is the product of
ashadow factor sx, y, z and a geometric factor mb (61), and Ma
(M) is the integral of the ambient illuminant and geometric
body reflectance over a hemisphere, excluding the incident
illuminant. For more detailed information on the BIDR
model, reference should be made to U.S. application Ser. No.
11/341,751, filed Jan. 27, 2006, entitled: “Bi-illuminant
Dichromatic Reflection Model For Image Manipulation,”
published as US 2007/0176940 on Aug. 2, 2007.

Token map information indicates locations of tokens
within an image, relative to one another. The map information
is used to identify neighboring tokens for performing an
analysis of token neighbor relationships relevant to constrain-
ing spatio-spectral relationships between tokens, for input to
the solver. A token map can be generated for each selectively
varied representation of the original image in respect of
tokens identified at each respective variation.

Log chromaticity representation values provide illumina-
tion invariant values for pixels of the image. Logarithmic
values of the color band values of the image pixels are plotted
on a log-color space graph. The logarithmic values are then
projected to a log-chromaticity projection plane oriented as a
function of the BIDR model. The chromaticity plane values
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are substituted for the color band values (for example, RGB
values) of each pixel. For more detailed information on log
chromaticity representation values, reference should be made
to U.S. Pat. No. 7,596,266.

An X+junction is an area of an image where a material edge
and an illumination boundary cross one another. An X-junc-
tion is an optimal location for an accurate analysis of material
and illumination aspects of an image.

A boundary representation is an arrangement of pixels, on
each side of a boundary, formed by, for example, adjacent
Type B tokens. The arrangement is used to facilitate an analy-
sis of the boundary to classify the boundary as a material
boundary on a smooth surface (as opposed to another type of
boundary, for example, an illumination edge, depth boundary
or simultaneous illumination and material change). The pixel
representation is configured to provide samples of pixels
within each of the Type B tokens forming the boundary. The
pixels of the samples are subject to spatio-spectral analysis,
and the results are compared to determine the likelihood that
the respective boundary corresponds to a material change.

A texton is ahomogeneous representation for aregion of an
image that comprises a texture. Image texture can be defined
as a function of spatial variation in pixel intensities. Image
texture patterns are frequently the result of physical or reflec-
tive properties of the image surface. Commonly, an image
texture is associated with spatial homogeneity and typically
includes repeated structures, often with some random varia-
tion (e.g., random positions, orientations or colors). Image
textures are also often characterized by certain visual prop-
erties such as regularity, coarseness, contrast and direction-
ality. An example of image texture is the image of a zebra skin
surface as it appears to be spatially homogenous and seems to
contain variations of color intensities which form certain
repeated patterns. Some image textures can be defined by
geometric characteristics, such as stripes or spots. A texton
based operator, such as a texture token, as will be described,
transforms patterns of differing reflectance caused by a tex-
tured material into a homogeneous representation that cap-
tures the spectral and spatial characteristics of the textured
region in the image.

Constraints between spatio-spectral operators comprise,
for example, an anchor constraint, a same illumination con-
straint, a smooth illumination constraint, a Type B token or
same material constraint, a Linear token constraint, a BIDR
enforcement constraint, a same texton histogram constraint, a
log chromaticity similarity constraint, an X junction con-
straint, and a boundary representation constraint. Other con-
straints can be formed as between spatio-spectral operators,
or other indicia, from different ones of the selectively varied
representations of the image, such as, for example, the
weighted average color constraint described above. Each con-
straint is configured as a constraint generator software mod-
ule that defines the spatio-spectral operators utilized by the
respective constraint and provides an expression of the con-
straining relationship imposed upon the constituent opera-
tors.

An anchor constraint utilizes, for example, a number of
brightest/largest Type C tokens in an image. The constraining
relationship is that the material of the selected brightest/
largest Type C tokens is constrained to be an absolute value
for the color/brightness observed in the image. The constraint
anchors a material map for the image at an absolute brightness
to avoid relative brightness constraints.

A same illumination constraint utilizes Type C tokens and
Type B tokens identified in an image and token map informa-
tion. The constraining relationship is that adjacent Type C
tokens, as indicted by the token map information, are at the
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same illumination, unless the adjacent Type C tokens are part
of the same Type B token. The term “same” in connection
with the term “illumination” is used to mean an average value
with respect to a noise model for the imaging system used to
record the image. This constrains any observed differences in
appearance between adjacent Type C tokens, that are not part
of the same Type B token, to be a material change, as will
appear.

A smooth illumination constraint is similar to the same
illumination constraint. However, rather than constraining all
pixels of adjacent Type C tokens to be of the same illumina-
tion, as in the same illumination constraint, in the smooth
illumination constraint, the constraint is based upon the aver-
age illumination of the pixels near a shared boundary between
adjacent Type C tokens. This constrains the illumination field
to be somewhat smooth, as opposed to piecewise constant
(the same, as defined above) throughout a token.

A Type B token or same material constraint also utilizes
Type C tokens and Type B tokens. However, the constraining
relationship is that all Type C tokens that are part of the same
Type B token are constrained to be of the same material. This
constraint enforces the definition of a Type B token, that is, a
connected image region comprising contiguous pixels that
represent a region of the image encompassing a single mate-
rial in the scene, though not necessarily the maximal region
corresponding to that material. Thus, all Type C tokens that lie
within the same Type B token are by the definition imposed
upon Type B tokens, of the same material, though not neces-
sarily of the same illumination. The Type C tokens are there-
fore constrained to correspond to observed differences in
appearance that are caused by varying illumination.

Accordingly, the Type B token constraint is complemen-
tary to the same and smooth illumination constraints, which,
as opposed to illumination change, constrain observed differ-
ences to correspond to material change, as described above.
This is due to the fact that in each of the same and smooth
illumination constraints, Type C tokens that are adjacent and
not part of the same Type B token, are constrained to the same
illumination. These Type C tokens should comprise different
materials, since by the constraint, they are not in the same
Type B token and therefore, by the definition of Type B tokens
enforced by the constraint, do not encompass a single mate-
rial, so illumination should be a constant, and any observed
difference is considered as attributable to a material change.

To summarize, pursuant to a feature of the present inven-
tion, the Type C and Type B token spatio-spectral operators
are defined to provide characteristics of an image that enable
segregation of illumination and material. Type C tokens each
comprise a connected image region of similar image proper-
ties, for example similar color, as recorded and stored in an
image file 18. Thus, adjacent Type C tokens indicate some
form of change in the image or else they would form the same
Type C token. Type B tokens encompass a single material.
The complementary constraints of the same/smooth illumi-
nation constraints and the Type B token constraint enforce
relationships between the tokens that indicate either a mate-
rial change or an illumination change.

If the adjacent Type C tokens are within the same type B
token, as in the Type B token constraint, the differences
between them should correspond to illumination change due
to the same material property of the common Type B token. If
the adjacent Type C tokens are not within the same Type B
token, as in the same/smooth illumination constraints, the
difference between them should then correspond to a material
change since they are not both defined by a common, single
material Type B token.
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A Linear token constraint utilizes Type C tokens and Linear
tokens. The constraining relationship is that a difference
between two Type C tokens, spaced by a Linear token,
approximately equals a characteristic illuminant spectral
ratio for the image. As defined, a Linear token follows a
cylinder configuration along a positive slope, through color
space. The BIDR model predicts that the positive slope equals
a characteristic illuminant spectral ratio for the image. Thus,
the color difference between two Type C tokens, one at each
of'the dark end and bright end of'a Linear token, should reflect
the value of the respective characteristic illuminant spectral
ratio for the image.

A BIDR enforcement constraint utilizes Type C tokens and
a BIDR model defined normal vector for the log-chromaticity
projection plane. The constraining relationship is that the
illumination for all Type C tokens in alocal patch of the image
forms a set of parallel lines in log-color space, the orientation
of'the parallel lines being defined by the BIDR model defined
normal vector. The constraint therefore enforces the illumi-
nation field present in the image to explicitly fit the BIDR
model prediction for the illumination.

Thus, each of the Linear token constraint and the BIDR
enforcement constraint utilize BIDR model predictions as a
basis to segregate illumination and material aspects of an
image. The BIDR model predicts a color change in an image
when the color change is due to an illumination change form-
ing a shadow (i.e. a decrease in the intensity of the incident
illuminant as the interplay between the incident or direct
illuminant and the ambient illuminant in the illumination
field) over a single material of a scene depicted in the image.
The color change prediction of the BIDR model accurately
constrains all color band variations among Type C tokens to
illumination field effects occurring in an image by operating
as a function of the interplay between the spectral variations
occurring between incident illuminant and ambient illumi-
nant components of the illumination field. Thus, BIDR model
based constraints couple all color band variations into one
integral constraining relationship.

A same texton histogram constraint utilizes Type C tokens
and texton histogram operators identified for texture regions,
such as texture tokens, within an image. A texton analysis is
utilized wherein each pixel of the image (or pixels of those
regions of an image identified as comprising a texture) from
the recorded color band representation of the respective
image file 18, such as, for example, RGB color band values,
is converted to a two band representation wherein the two
bands comprise a texton label and a texton histogram label.
The two band representations are then used to identify texture
tokens, as will be described below. A constraint can be
imposed that all Type C tokens within the same texture token
are of the same mean material.

A log chromaticity similarity constraint utilizes Type C
tokens and log chromaticity representation values. The con-
straining relationship is that those Type C tokens having
pixels with similar log chromaticity representation values are
constrained to a same color value, with observed differences
being attributed to variations in the illumination field.

An X-junction constraint utilizes Type C tokens and
X-junction operators. As noted above, an X-junction is an
area of an image where a material edge and an illumination
boundary cross one another. X-junctions are typically identi-
fied by four Type C tokens, two pairs of same material Type C
tokens forming the material edge, with each same material
pair including an illumination boundary dividing the respec-
tive same material into lit and shadowed pairs of Type C
tokens. The constraining relationship: 1) a Type B token
constraint is imposed between each same material pair of
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Type C tokens forming the X-junction (those with an illumi-
nation boundary between them), and 2) a same illumination
constraint is imposed between each pair of Type C tokens
forming the material edge of the X-junction. For a more
detailed description of X-junctions and the relationships of
constituent tokens, reference should be made to U.S. appli-
cation Ser. No. 11/341,742, filed Jan. 27, 2006, entitled:
“Method And System For Identifying [llumination Flux In An
Image,” published as US 2006/0177149 on Aug. 10, 2006.

A boundary representation constraint is defined by a stan-
dard ratio constraint. An analysis performed on a boundary
representation, when indicating a material change, provides
an estimate of the ratio of colors between two adjacent
regions defined by the boundary, for example, the adjacent
Type B tokens, even when the illumination varies over the
regions. The constraint states that the ratio of the colors of two
adjacent regions is X. The boundary representation analysis is
executed at the level of Type B tokens, to classify a boundary
as being caused by a material change, then propagated down
to the level of the constituent Type C tokens. For a more
detailed description of a boundary analysis, at the Type B
token level, reference should be made to U.S. application Ser.
No. 12/079,878, filed Mar. 28, 2008, entitled “System and
Method For Illumination Invariant Image Segmentation.”

According to a feature of the present invention, the bound-
ary representation constraint states that all adjacent pairs of
Type C tokens along the boundary, (one Type C token on each
side ofthe boundary, and all of the Type C tokens being within
the Type B tokens forming the respective boundary), have
colors that satisty the ratio X, as indicated by the boundary
representation analysis.

According to a preferred embodiment of the present inven-
tion, each of the above described constraints can be classified
into one of three basic types of constraints, an absolute mate-
rial color constraint, a same material constraint and a relative
reflectance constraint. The absolute material constraint con-
strains the material at a particular location of an image to be
a certain color, as implemented in, for example, the anchor
constraint. The same material constraint constrains operators
relevant to an image (for example, two pixels or Type C
tokens) to be of the same material. The same material type of
constraint can be implemented in, for example, Type B,
X-junction, log chromaticity similarity, same texton histo-
gram and linear token constraints. The relative reflectance
constraint constrains operators relevant to an image (for
example, two pixels or Type C tokens) to have a similarity of
reflectance characteristics, such as defined by smooth illumi-
nation and same illumination constraints, and which can be
specified by X-junction, and boundary representation con-
straints.

In another example of the selectively varied representation
embodiment of the present invention, such as the multi-reso-
Iution embodiment, groupings provided by the spatio-spec-
tral operators, such as Type C tokens, Type B tokens and
texture tokens, are identified at one scale, such as a fine scale
(for example image file 18) and constraining relationships
among those groupings are projected to a coarse scale (for
example image file 18a). In this exemplary embodiment of
the present invention, a constraint implemented at a fine scale
representation, such as, for example, the same material con-
straint of a Type B token constraint, is arranged to constrain
pixels or Type C tokens to be within in the same Type B token,
and further, to be within a relatively limited neighborhood of
the fine scale representation. The neighborhood is limited to
an extent somewhat less than the extent of a typical relevant
Type B token, for example, a neighborhood comprising a
50x50 pixel array. The limited neighborhood restriction has
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the advantage of assuring a sparse matrix for an accurate
solution, with operating efficiencies for speedy processing,
resulting from the limited extent of the image subject to
analysis according to the constraint. However, the implemen-
tation across multiple scales also assures a solution according
to a long range constraint since a short range within a coarse
scale representation corresponds to a relatively long range in
the fine scale representation.

A projection of the constraining relationship imposed on a
grouping, from one scale, to another scale, is implemented,
for example, by upsampling the grouping identified and used
in the constraint at the fine scale representation, to a next
coarse scale representation. The performance of the con-
straint is repeated at the coarse scale, again limiting the neigh-
borhood processed at the coarse scale, and subject to the
inter-scale relationship defined by the filtering/downsam-
pling operation, and so on throughout the various scales of the
pyramid. The limit at the coarse scale is a multiple of the same
limit of the relatively fine scale. For example, as shown in
FIG. 34, a single pixel, P,(3, 2) in the relatively coarse reso-
Iution image file 18a corresponds to pixels P(5, 3), P(6, 3),
P(5, 4) and P(6, 4) of fine resolution image file 18. The
grouping can be identified at any of the scales of resolution,
and projected via upsampling or downsampling to the other
scales.

An exemplary solver according to a feature of the present
invention comprises a mathematical processing engine for
executing an optimizing function, for example, optimization
of results in an equation expressed by: [A] [x]=[b], where [A]
is a matrix of values that are to be satisfied by (and therefore,
taken as solved for by) the definitions of the operator(s) and
the constraining relationship(s) for the operator(s), as indi-
cated by selected constraint(s), [X] is a matrix of variables for
which the equation is finding an optimal solution, for
example, one of an illumination or material component of an
image component, for example, a pixel or token, and [b] is a
matrix of values observed in an image selected for processing,
for example, the recorded values for the RGB color bands of
each pixel of an image file 18 or color values of pixels within
a selectively varied representation of the original image
depicted in image file 18 (e.g. image files 18a . . . 18r). The
optimizing equation can be implemented in a mathematical
optimizing function selected from a set of known optimiza-
tion solvers such as, for example, known convex optimization
operations such as a least squares solver, or a preconditioned
conjugate gradient solver.

According to the selectively varied representation embodi-
ment of the present invention, a solution according to the [A]
[x]=[b] matrix equation can be accomplished at each repre-
sentation, for example, at each scale of the scale-spaced pyra-
mid, either simultaneously or sequentially. The inter-scale
relationship constrains the multi-scale solution, while intro-
ducing efficiencies in operation execution for increased
speed. By dividing processing across different scales, solu-
tions are found for a set of smaller systems rather than one
large complex system. Thus, the solutions are more accurate
and the CPU 12 can execute in faster computation times while
utilizing substantially less memory.

FIG. 4 shows a functional block diagram of an image
segregation system architecture, implemented in, for
example, the computer system of FIG. 1, according to a
feature of the present invention. Alternatively, the functional
blocks of FIG. 4 can be implemented in a dedicated hardware
circuit arranged to perform the functionality of the blocks of
FIG. 4. Animage 32 (as depicted in an image file 18, or one of
the selectively varied representations in image files
18a, . . . 18n) is input to a preprocessing block 33. The
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preprocessing block 33 can perform such functions as correc-
tion of chromatic aberration in the image 32, combining
multiple images to provide a high dynamic range image,
linearize pixel data for the image, and so on, for an image
optimized for processing. The pre-processed image is then
input to a Type C tokenization block 35 which operates to
identify Type C tokens in the pre-processed image, in the
manner described below with reference to FIG. 6a. Type C
tokens are common to many of the constraints utilized in
exemplary embodiments of the present invention, thus, an
initial identification of Type C tokens for an input image 32
expedites further processing.

In an exemplary embodiment of the present invention, the
CPU 12 executes code to implement both the preprocessing
block 33 and the Type C tokenization block 35, as well as a
service provider 24, that functions as a central agent and
caching structure (configured in the memory 16), to handle an
image for processing according to the teachings of the present
invention. The service provider 24 receives and stores the
pre-processed image and related Type C token information
from the Type C tokenization block 35, and is coupled to an
operators block 28 (executed by the CPU 12) arranged to
generate any other operators for the image required by
selected constraints, as will appear. The service provider 24 is
also coupled to a global features extraction input 29. The
global features extraction input 29 can be used to provide the
system with information relevant to an image being pro-
cessed, such as an indication of light source when the image
was taken (sunlight, fluorescent light, incandescent light),
time of day, location, domain knowledge, such as information
relevant to the nature of the image, such as interior, exterior,
buildings, lawns with green grass, trees with leaves in bloom,
etc., and any other parameters relevant to image processing.
The service provider 24 stores the global features extraction
input 29 with a related input image 32.

A constraint builder 26 is coupled to the service provider
24. The constraint builder 26 uses a constraint generator
library (configured within the memory 16) that stores the
constraint generator software modules for the various con-
straints described above. The service provider 24 and con-
straint builder 26 operate to arrange spatio-spectral operators
relevant to the pre-processed image, according to selected
ones of the constraint generator software modules, in for
example, the [A] [x]=[b] matrix equation.

A solver 30 (executed by the CPU 12) is coupled to the
constraint builder 26, and implements an optimization opera-
tion, as described above, for an optimal solution for the [A]
[x]=[b] matrix equation, for use in generating intrinsic
images from the pre-processed image. The solver 30 is also
coupled to a post-processing block 36 (executed by the CPU
12) for certain post-processing operations. The post-process-
ing operations can include, for example, monotonicity main-
tenance. In monotonicity maintenance, if two large regions
exhibit a linear transition in the input image 32, the transition
should remain a linear transition in the output intrinsic image
34. Post-processing can also include illumination propaga-
tion, that serves to fill in holes left by the solver 30, illumi-
nation-map based white balancing and other filtering,
smoothing processes. The post-processing block 36 outputs
intrinsic images 34.

Referring now to FIG. 5, there is shown a graphical user
interface (GUI) for use in connection with an exemplary
implementation of the image segregation system architecture
feature of the present invention. The GUI of FIG. 5 is dis-
played on the monitor 20 of the computer system 10 by the
service provider 24 for a user to select a desired image seg-
regation operation. The upper left hand corner of the GUI
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indicates Open Image, Crop Image, Show Parameters, Seg-
regate and Multi-Resolution selection indicators. A user can
move and click a cursor on a desired selector indicator. The
Open Image indicator lists all image files 18 currently stored
in the memory 16 and enables the user to select an image for
processing. The selected image is input 32 (see FIG. 4) to the
service provider 24 (via the preprocessing block 33 and the
Type C tokenization block 35) which operates to display the
selected image at the upper center of the monitor 20 (FIG. 5).

A material image derived by operation of the exemplary
segregation system from the selected image is output 34 (see
FIG. 4) after execution of the image segregation processing
by the solver 30 and displayed at the lower right hand of the
monitor 20 (FIG. 5). The derived illumination image is dis-
played at the lower right hand of the monitor 20 (FIG. 5).

According to a feature of the present invention, the Crop
Image selector permits a user to crop a selected image so as to
process a portion of the overall image. The Show Parameter
selector displays parameters related to the selected image file
18. Parameters for each image file 18 can be stored in a
parameter data file associated with a corresponding image file
18, and include any parameters relevant to the processing of
the image depicted in the associated image file 18, for
example the global features extraction input 29. Parameters
can include any data relevant to image processing such as, for
example, any variable for pixel analysis by the CPU 12, as for
example, in the generation of spatio-spectral operators, and
domain knowledge, such as information relevant to the nature
of'the image, such as interior, exterior, buildings, lawns with
green grass, trees with leaves in bloom, etc.

A multi-resolution selector can display a drop down menu
that provides options such as either a Gaussian or Laplacian
pyramid generation, with specification of the number of
scales, and the resolution of each scale. The drop down menu
can also include selections for a computer operation for illu-
mination and material image segregation, to be performed at
arelatively coarse scale representation of the image, and then
used to constrain a solution at a relatively finer scale resolu-
tion. In another selection option, a segregation of illumination
and material aspects of the image is selectively divided
among representations at differing scales of image resolution,
as described above.

Below the selection indicators is a list of each of the opti-
mizing functions that can be used as the solver 30, and a
further list of each of the constraint generators contained in
the constraint generator library of the constraint builder 26. A
user selects a desired mathematical operation and one or more
of the constraints to be imposed upon the selected image.
After selection of the image to be processed, the constraints to
be imposed and the mathematical operation to be executed,
the user can click on the Segregate indicator to commence
image segregation processing.

Upon commencement of the image segregation process-
ing, the service provider 24 generates a scale-spaced pyramid,
if a multi-resolution operation is selected, and retrieves the
constraint generator software modules for the selected con-
straints to identify the spatio-spectral operators utilized by the
selected constraints. Any spatio-spectral operators not
already stored by the service provider 24 are generated by the
operators block 28, for the image being segregated, and the
service provider 24 caches the results. The cached results can
be reused in any subsequent operation for a selected image,
with the same set of associated parameters.

In a multi-resolution operation, the service provider 24 can
sequence operations, such as perform the segregation at the
relatively coarse representation of image file 18a, store the
results, then proceed to a segregation of image file 18, enforc-
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ing the color constraint described above. The service provider
24 (operating via the CPU 12) can also be operated to execute
a standard edge detector, then define regions of the relatively
fine resolution image of image file 18 around each identified
edge. An image segregation is then performed in respect of
the identified edge regions of the image file 18. A subsequent
image segregation is performed on relatively coarse image
file 18a for regions corresponding to all non-edge regions of
image file 18.

In an example of an implementation of the spatio-spectral
operator/constraint/solver model of the present invention,
when the selected constraint is a same illumination constraint,
the service provider 24 identifies Type C tokens, Type B
tokens and a token map for the selected image. The Type C
tokens were generated by the Type C tokenization block 35.
The service provider 24 operates the operators block 28 to
generate the remaining operators specified by the same illu-
mination constraint.

Referring now to FIG. 6a, there is shown a flow chart for
generating Type C token regions in the image file of FIG. 2,
(as depicted in one or more or each of image file 18, and image
files 184, . . . n), according to a feature of the present inven-
tion. Type C tokens can be readily identified in an image by
the Type C tokenization block 35, utilizing the steps of FIG.
6a. The operators block 28 can then analyze and process the
Type C tokens to construct Type B tokens when specified by
a selected constraint, as will appear.

A 1” order uniform, homogeneous Type C token comprises
a single robust color measurement among contiguous pixels
of'the image. At the start of the identification routine of FIG.
6a, the CPU 12 (executing as the Type C tokenization block
35) sets up a region map in memory. In step 100, the CPU 12
clears the region map and assigns a region ID, which is
initially set at 1. An iteration for the routine, corresponding to
a pixel number, is set at i=0, and a number for an NxN pixel
array, for use as a seed to determine the token, is set an initial
value, N=Nstart. Nstart can be any integer >0, for example it
can be set at setat 11 or 15 pixels.

Atstep 102, a seed test is begun. The CPU 12 selects a first
pixel, i=(1, 1) for example (see FIG. 2), the pixel at the upper
left corner of a first NxN sample of the image file 18. The
pixel is then tested in decision block 104 to determine if the
selected pixel is part of a good seed. The test can comprise a
comparison of the color value of the selected pixel to the color
values of a preselected number of its neighboring pixels as the
seed, for example, the NxN array. The color values compari-
son can be with respect to multiple color band values (RGB in
our example) of the pixel or the filter output intensity histo-
gram representation of the pixel, in the event the image was
filtered for texture regions, as described above. If the com-
parison does not result in approximately equal values (for
example, within the noise levels of the recording device for
RGB values) for the pixels in the seed, the CPU 12 increments
the value of'i (step 106), for example, i=(1, 2), for a next NxN
seed sample, and then tests to determine if i=imax (decision
block 108).

If'the pixel value is at imax, a value selected as a threshold
for deciding to reduce the seed size for improved results, the
seed size, N, is reduced (step 110), for example, from N=15to
N=12. In an exemplary embodiment of the present invention,
imax can be set at i=(n, m). In this manner, the routine of FIG.
5a parses the entire image at a first value of N before repeating
the routine for a reduced value of N.

After reduction of the seed size, the routine returns to step
102, and continues to test for token seeds. An Nstop value (for
example, N=2) is also checked in step 110 to determine if the
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analysis is complete. If the value of N is at Nstop, the CPU 12
has completed a survey of the image pixel arrays and exits the
routine.

If the value of i is less than imax, and N is greater than
Nistop, the routine returns to step 102, and continues to test for
token seeds.

When a good seed (an NxN array with approximately equal
pixel values) is found (block 104), the token is grown from the
seed. In step 112, the CPU 12 pushes the pixels from the seed
onto a queue. All of the pixels in the queue are marked with
the current region ID in the region map. The CPU 12 then
inquires as to whether the queue is empty (decision block
114). If the queue is not empty, the routine proceeds to step
116.

In step 116, the CPU 12 pops the front pixel off the queue
and proceeds to step 118. In step 118, the CPU 12 marks
“good” neighbors around the subject pixel, that is neighbors
approximately equal in color value to the subject pixel, with
the current region ID. All of the marked good neighbors are
placed in the region map and also pushed onto the queue. The
CPU 12 then returns to the decision block 114. The routine of
steps 114, 116, 118 is repeated until the queue is empty. At
that time, all of the pixels forming a token in the current region
will have been identified and marked in the region map as a
Type C token. In the event the pixels comprise intensity
histogram representations, the token can be marked as Type
C.

When the queue is empty, the CPU 12 proceeds to step 120.
At step 120, the CPU 12 increments the region ID foruse with
identification of a next token. The CPU 12 then returns to step
106 to repeat the routine in respect of the new current token
region.

Upon arrival at N=Nstop, step 110 of the flow chart of FIG.
5a, or completion of a region map that coincides with the
image, the routine will have completed the token building
task. FIG. 6b is an original image used as an example in the
identification of tokens. The image shows areas of the color
blue and the blue in shadow, and of the color teal and the teal
in shadow. FIG. 6¢ shows token regions corresponding to the
region map, for example, as identified through execution of
the routine of FIG. 64 (Type C tokens), in respect to the image
of FIG. 64. The token regions are color coded to illustrate the
token makeup of the image of FIG. 65, including penumbra
regions between the full color blue and teal areas of the image
and the shadow of the colored areas.

Upon completion of the routine of FIG. 6a by the Type C
tokenization block 35, the service provider 24 stores the Type
C token region information for the selected image. Prior to
commencing any process to generate Type B tokens from the
identified Type C tokens, the operators block 28 tests each
identified Type C token to make certain that each Type C
token encompasses a single material. While each Type C
token comprises a region of the image having a single robust
color measurement among contiguous pixels of the image,
the token may grow across material boundaries.

Typically, different materials connect together in one Type
Ctoken via a neck region often located on shadow boundaries
or in areas with varying illumination crossing different mate-
rials with similar hue but different intensities. A neck pixel
can be identified by examining characteristics of adjacent
pixels. When a pixel has two contiguous pixels on opposite
sides that are not within the corresponding token, and two
contiguous pixels on opposite sides that are within the corre-
sponding token, the pixel is defined as a neck pixel.

FIG. 7 shows a flow chart for a neck test for Type C tokens.
In step 122, the CPU 12 examines each pixel of an identified
token to determine whether any of the pixels under examina-
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tion forms a neck. The routine of FIG. 6 can be executed as a
subroutine directly after a particular token is identified during
execution of the routine of FIG. 6a. All pixels identified as a
neck are marked as “ungrowable.” In decision block 124, the
CPU 12 determines if any of the pixels were marked.

Ifno, the CPU 12 exits the routine of FIG. 7 and returns to
the routine of FIG. 6a (step 126).

If yes, the CPU 12 proceeds to step 128 and operates to
regrow the token from a seed location selected from among
the unmarked pixels of the current token, as per the routine of
FIG. 6a, without changing the counts for seed size and region
ID. During the regrowth process, the CPU 12 does not include
any pixel previously marked as ungrowable. After the token is
regrown, the previously marked pixels are unmarked so that
other tokens may grow into them.

Subsequent to the regrowth of the token without the previ-
ously marked pixels, the CPU 12 returns to step 122 to test the
newly regrown token.

Neck testing identifies Type C tokens that cross material
boundaries, and regrows the identified tokens to provide
single material Type C tokens suitable for use in creating Type
B tokens. FIG. 6d shows Type B tokens generated from the
Type C tokens of FIG. 6¢, according to a feature of the present
invention. The present invention provides several exemplary
techniques of pixel characteristic analysis for constructing
Type B tokens from Type C tokens. One exemplary technique
involves arbitrary boundary removal. The arbitrary boundary
removal technique can be applied to Type C tokens whether
they were generated using N color band values (RGB in our
example) of the pixel or the filter output representation of the
pixel, in the event the image was filtered. Actual boundaries of
any particular Type C token will be a function of the seed
location used to generate the token, and are thus, to some
extent arbitrary. There are typically many potential seed loca-
tions for each particular token, with each potential seed loca-
tion generating a token with slightly different boundaries and
spatial extent because of differences among the color values
of the pixels of the various seeds, within the noise ranges of
the recording equipment.

FIG. 8 is a flow chart for constructing Type B tokens via an
arbitrary boundary removal technique, according to a feature
of the present invention. In step 200, the CPU 12 is provided
with a set (T,.) of Type C tokens generated with a seed size (S)
via the routine of FIG. 6a, with neck removal via the routine
of FIG. 7. The seed size S=S,,,,, for example, S=4 pixels. In
step 202, for each Type C token, t, in the set T the CPU 12
selects a number (for example 50) of potential seeds s, to s,,.
In our example, each selected seed will be a 4x4 pixel array
from within the token region, the pixels of the array being of
approximately equal values (within the noise levels of the
recording device).

In step 204, the CPU 12 grows a new Type C token, utiliz-
ing the routines of FIGS. 64 and 7, from each seed location, s,
to s, of eachtokent,intheset T . The newly grown tokens for
each token t_ are designated as tokens r,, to r,,. The newly
grown tokens r,, tor_, for each token t_ generally overlap the
original Type C token t_, as well as one another.

In step 206, the CPU 12 operates to merge the newly
generated tokens r_, to r_, of each token t_, respectively. The
result is a new token R, corresponding to each original token
t. in the set T_. Each new token R, encompasses all of the
regions of the respective overlapping tokens r,, to r,,, gener-
ated from the corresponding original token t.. The unions of
the regions comprising the respective merged new tokens R,
are each a more extensive token than the original Type C
tokens of the set. The resulting merged new tokens R, result in
regions of the image file 18, each of a much broader range of
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variation between the pixels of the respective token R, than
the original Type C token, yet the range of variation among
the constituent pixels will still be relatively smooth. R, is
defined as a limited form of Type B token, Type B,,,, to
indicate a token generated by the first stage (steps 200-206) of
the arbitrary boundary removal technique according to a fea-
ture of the present invention.

In step 208, the CPU 12 stores each of the Type B, tokens
generated in steps 202-206 from the set of tokens T_, and
proceeds to step 210. Type B,,,; tokens generated via execu-
tion of steps 202-206 may overlap significantly. In step 210,
the CPU 12 operates to merge the R, tokens stored in step 208
that overlap each other by a certain percentage of their respec-
tive sizes. For example, a 30% overlap is generally sufficient
to provide few, if any, false positive merges that combine
regions containing different materials. The new set of merged
tokens still may have overlapping tokens, for example, pre-
viously overlapping tokens that had a less than 30% overlap.
After all merges are complete, the CPU 12 proceeds to step
212.

In step 212, the CPU 12 identifies all pixels that are in more
than one token (that is in an overlapping portion of two or
more tokens). Each identified pixel is assigned to the token
occupying the largest region of the image. Thus, all overlap-
ping tokens are modified to eliminate all overlaps.

In step 214, the CPU 12 (as the Type C tokenization block
35 or the operators block 28) stores the final set of merged and
modified tokens, now designated as Type B,,, tokens, and
then exits the routine. As noted above, the Type B,,, tokens
were generated from Type C tokens whether the Type C
tokens were generated using N color band values (RGB in our
example) of the pixel or the filter output representation of the
pixel, in the event the image was filtered.

A second exemplary technique according to the present
invention, for using Type C tokens to create Type B tokens, is
adjacent planar token merging. The adjacent planar token
merging can be implemented when an image depicts areas of
uniform color, that is for non-textured regions of an image.
Initially, a token graph is used to identify tokens that are near
to one another. FIG. 9 shows a flow chart for creating a token
graph, containing token map information, according to a fea-
ture of the present invention. Each token t_ in the set of Type
C tokens T, generated through execution of the routines of
FIGS. 6a and 7, is evaluated in terms of a maximum distance
D,,.. between tokens defining a neighboring pair of tokens, t_,
t,, of the set T, a minimum number of token perimeter pixels,
P,...» in each token of the neighboring pair of tokens, and a
minimum fraction of perimeter pixels, F,,,,,,, of each token of
a neighboring pair of tokens, required to be within D, .

In step 300, the CPU 12 selects a Type C token t,. in the set
of Type C tokens T, and identifies the pixels of the selected
token t, forming the perimeter of the token. In a decision
block 302, the CPU 12 determines whether the number of
perimeter pixels is less than P, , for example 10 pixels.

If yes, the CPU 12 proceeds to decision block 304 to
determine whether there are any remaining tokens t_ in the set
of Type C tokens T.. If yes, the CPU 12 returns to step 300, if
no, the CPU 12 exits the routine 306.

If no, the CPU 12 proceeds to step 308. In step 308, the
CPU 12 generates a bounding box used as a mask to surround
the selected token t, The bounding box is dimensioned to be
atleast D, larger than the selected token t_ in all directions.
A known distance transform (for example, as described in P.
Felzenszwalb and D. Huttenlocher, Distance Transforms of
Sampled Functions, Cornell Computing and Information Sci-
ence Technical Report TR2004-1963, September 2004), is
executed to find the distance from each perimeter pixel of the
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selected token t,. to all the pixels in the surrounding bounding
box. The output of the distance transform comprises two
maps, each of the same size as the bounding box, a distance
map and a closest pixel map. The distance map includes the
Euclidean distance from each pixel of the bounding box to the
nearest perimeter pixel of the selected token t.. The closest
pixel map identifies, for each pixel in the distance map, which
perimeter pixel is the closest to it.

In step 310, the CPU 12 scans the distance map generated
in step 308 to identify tokens corresponding to pixels of the
bounding box (from the region map generated via the routine
of FIG. 6a), to identify a token from among all tokens repre-
sented by pixels in the bounding box, that has anumber N, of
pixels within the distance D, , wherein N_, is greater than
P,...» and greater than F,,, *perimeter pixels of the respective
token and the average distance between the respective token
and t,is the lowest of the tokens corresponding to the pixels in
the bounding box. If these conditions are satisfied, the respec-
tive token is designated t,, of a possible token pairt_, t,, and a
link L, is marked active.

In step 312, the CPU 12 checks to determine whether a
reciprocal link L, is also marked active, and when it is
marked active, the CPU 12 marks and stores in the token
graph, an indication that the token pair t_, t, is a neighboring
token pair. The reciprocal link refers to the link status in the
evaluation of the token designated as t,, in the current evalu-
ation. If that token has yet to be evaluated, the pair is not
designated as a neighboring token pair until the link L_, is
verified as active in the subsequent evaluation of the token ,,.
The CPU 12 then returns to decision block 304 to determine
whether there are any further tokens in the set T,.

Upon completion of the token graph, the CPU 12 utilizes
token pair information stored in the graph in the execution of
the routine of FIG. 10. FIG. 10 shows a flow chart for con-
structing Type B tokens via the adjacent planar token merging
technique, according to a feature of the present invention. In
the adjacent planer merging technique, pairs of tokens are
examined to determine whether there is a smooth and coher-
ent change in color values, in a two dimensional measure,
between the tokens of the pair. The color change is examined
in terms of a planar representation of each channel of the
color, for example the RGB components of the pixels accord-
ing to the exemplary embodiments of the present invention. A
smooth change is defined as the condition when a set of planes
(one plane per color component) is a good fit for the pixel
values of two neighboring tokens. In summary, neighboring
tokens are considered the same material and a Type B token
when the color change in a two-dimensional sense is approxi-
mately planar.

In step 320, the CPU 12 selects a token pair t_, t,,, from the
token graph. In decision block 322, the CPU 12 determines
whether the mean color in token t, is significantly different
from the mean color in the token t.. The difference can be a
function of a z-score, a known statistical measurement (see,
for example, Abdi, H. (2007), Z-scores, in N. J. Salkind (Ed.),
Encyclopedia of Measurement and Statistics, Thousand
Oaks, Calif.: Sage), for example, a z-score greater than 3.0.

If the mean colors of the token pair are different, the CPU
12 proceeds to decision block 324 to determine whether there
are any additional token pairs in the token graph. If yes, the
CPU 12 returns to step 320. If no, the CPU 12 exits the routine
(step 326).

If the mean colors are within the z-score parameter, the
CPU 12 proceeds to step 328. In step 328, the CPU 12 per-
forms a mathematical operation such as, for example, a least
median of squares regression (see, for example, Peter J. Rous-
seeuw, Least Median of Squares Regression, Journal of the
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American Statistical Association, Vol. 79, No. 388 (Decem-
ber, 1984), pp. 871-880) to fit a plane to each color channel of
the pixels (in our example RGB) of the token pair t_, t,,, as a

function of row n and column m (see FIG. 2), the planes being
defined by the equations:

R=Xp,+ Yt 22 CG=X6,+YGu+ZcB=Xp,+ Y5, +Zp

wherein parameter values X, Y and C are determined by the
least median of squares regression operation of the CPU 12.

Upon completion ofthe plane fitting operation, the CPU 12
proceeds to step 330. In step 330, the CPU 12 examines each
pixel of each of the tokens of the token pair t_, t, to calculate
the z-score between each pixel of the tokens and the planar fit
expressed by the equation of the least median of squares
regression operation. When at least a threshold percentage of
the pixels of each token of the pair (for example, 80%), are
within a maximum z-score (for example, 0.75), then the
neighboring token pair is marked in the token graph as indi-
cating the same material in the image. After completion of
step 330, the CPU 12 returns to decision block 324.

Upon exiting the routine of FIG. 10, the CPU 12 examines
the token graph for all token pairs indicating the same mate-
rial. The CPU 12 can achieve the examination through per-
formance of a known technique such as, for example, a union
find algorithm. (See, for example, Zvi Galil and Giuseppe F.
Italiano. Data structures and algorithms for disjoint set union
problems, ACM Computing Surveys, Volume 23, Issue 3
(September 1991), pages 319-344). As a simple example,
assume a set of seven Type Ctokens T, T,, T3, T,, T5, T, T,.
Assume that the result of the execution of FIG. 9, (perfor-
mance of the adjacent planar analysis), indicates that tokens
T, and T, are marked as the same material, and tokens T, and
T, are also marked as the same material. Moreover, the results
further indicate that tokens T, and T are marked as the same
material, and tokens T and Ty are also marked as the same
material. The result of execution of the union find algorithm
would therefore indicate that tokens {T,, T,, T;} form a first
group within the image consisting of a single material, tokens
{T,, Ts, T¢} form a second group within the image consisting
of a single material, and token { T, }forms a third group within
the image consisting of a single material. The groups {T, T5,
Ts}, {T4, Ts, T} and {T,} form three Type B tokens.

A third exemplary technique according to the present
invention, for using Type C tokens to create Type B tokens, is
a local token analysis. A local token approach generates Type
C tokens using a window analysis of a scene depicted in an
image file 18. Such tokens are designated as Type C,, tokens.
FIG. 11 is a flow chart for generating Type C,, tokens via the
local token analysis technique, according to a feature of the
present invention.

In step 400, the CPU 12 places a window of fixed size, for
example, a 33x33 pixel array mask, over a preselected series
of'scan positions over the image. The window can be a shape
other than a square. The scan positions are offset from one
another by a fixed amount, for example %2 window size, and
are arranged, in total, to fully cover the image. The window
area of pixels at each scan position generates a Type C, token,
though not every pixel within the window at the respective
scan position is in the Type C,, token generated at the respec-
tive scan position.

At each scan position (step 402), the CPU 12 operates, as a
function of the pixels within the window, to fit each of a set of
planes, one corresponding to the intensity of each color chan-
nel (for example, RGB), and an RGB line in RGB space,
characterized by a start point I, and an end point I, of the
colors within the window. The planar fit provides a spatial
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representation of the pixel intensity within the window, and
the line fit provides a spectral representation of the pixels
within the window.

For the planar fit, the planes are defined by the equations:

R=Xp,+Yp,,+ZpCG=X,+YGu+ZcB=Xp,+Yp,.+Zp

wherein parameter values X, Y and C are determined by CPU
12 by executing a mathematical operation such as the least
median of squares regression discussed above, a least-squares
estimator, such as singular value decomposition, or a robust
estimator such as RANSAC (see, for example, M. A. Fischler,
R. C. Bolles. Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Auto-
mated Cartography. Comm. of the ACM, Vol 24, pp 381-395,
1981).

For the RGB line fit, the line is defined by:

I(r,g,b)=1,(r.g,b)+t(1; (r,g,b)-1,(r,g,b)) wherein the param-
eter t has a value between 0 and 1, and can be determined by
the CPU 12 utilizing any of the mathematical techniques used
to find the planar fit.

At each scan position, after completion of step 402, the
CPU 12 operates in step 404 to examine each pixel in the
window in respect of each of the planar fit representation and
RGB line representation corresponding to the respective win-
dow scan position. For each pixel, the CPU 12 determines an
error factor for the pixel relative to each of the established
planes and RGB line. The error factor is related to the absolute
distance of the pixel to its projection on either from either the
planar fit or the RGB line fit. The error factor can be a function
of the noise present in the recording equipment or be a per-
centage of the maximum RGB value within the window, for
example 1%. Any pixel distance within the error factor rela-
tive to either the spatial planar fit or the spectral line fit is
labeled an inlier for the Type C,, token being generated at the
respective scan position. The CPU 12 also records for the
Type C,, token being generated at the respective scan position,
a list of all inlier pixels.

At each scan position, after completion of step 404, the
CPU 12 operates in step 406 to assign a membership value to
each inlier pixel in the window. The membership value can be
based upon the distance of the inlier pixel from either the
planar fit or the RGB line fit. In one exemplary embodiment of
the present invention, the membership value is the inverse of
the distance used to determine inlier status for the pixel. In a
second exemplary embodiment, a zero-centered Gaussian
distribution with a standard deviation is executed to calculate
membership values for the inlier pixels.

After all of the scan positions are processed to generate the
Type C, tokens, one per scan position, the CPU 12 operates to
compile and store a token data list (step 408). The token data
list contains two lists. A first list lists all of the pixels in the
image file 18, and for each pixel, an indication of each Type
C,, token to which it labeled as an inlier pixel, and the corre-
sponding membership value. A second list lists all of the
generated Type C, tokens, and for each token an indication of
the inlier pixels of the respective token, and the corresponding
membership value. After compiling and storing the token data
list, the CPU 12 exits the routine (step 410).

FIG. 12 is a flow chart for constructing Type B tokens from
the Type C,, tokens generated via the local token analysis
technique, according to a feature of the present invention. In
step 420, the CPU 12 calculates a similarity of parameters of
the spatial planer dimensions and spectral RGB lines of adja-
cent or overlapping Type C,, tokens generated through execu-
tion of the routine of FIG. 108. Overlapping and adjacent
Type C,, tokens can be defined as tokens corresponding to
scan positions that overlap or are contiguous. A similarity
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threshold can be set as a percentage of difference between
each of the spatial planer dimensions and spectral RGB lines
of two overlapping or adjacent Type C,, tokens being com-
pared. The percentage can be a function of the noise of, for
example, the camera 14 used to record the scene of the image
file 18. All overlapping or adjacent Type C,, token pairs hav-
ing a calculated similarity within the similarity threshold are
placed on a list.

In step 422, the CPU 12 sorts the list of overlapping or
adjacent Type C,, token pairs having a calculated similarity
within the similarity threshold, in the order of most similar to
least similar pairs. In step 424, the CPU 12 merges similar
token pairs, in the order of the sort, and labeling pairs as per
degree of similarity. Each merged token pair will be consid-
ered a Typeg token. In step 426, the CPU 12 stores the list of
Type tokens, and exits the routine.

A fourth exemplary technique according to the present
invention, for creating Type B tokens, is a technique using log
chromaticity clustering. for constructing Type B tokens for an
image file 18. Log chromaticity is a technique for developing
an illumination invariant chromaticity space. As noted above,
a method and system for separating illumination and reflec-
tance using a log chromaticity representation is disclosed in
U.S. Pat. No. 7,596,266. The techniques taught in U.S. Pat.
No. 7,596,266 can be used to provide illumination invariant
log chromaticity representation values for each color of an
image, for example, as represented by Type C tokens. Loga-
rithmic values of the color band values of the image pixels are
plotted on alog-color space graph. The logarithmic values are
then projected to a log-chromaticity projection plane oriented
as a function of the bi-illuminant dichromatic reflection
model (a BIDR normal), to provide a log chromaticity value
for each pixel.

FIG. 13 is a graphic representation of a log color space,
bi-illuminant chromaticity plane according to a feature of the
invention disclosed in U.S. Pat. No. 7,596,266. The alignment
of'the chromaticity plane is determined by a vector N, normal
to the chromaticity plane, and defined as N=log(Brightvec-
tor)-log(Darkvector)=log(1+1/Svector). The co-ordinates of
the plane, u, v can be defined by a projection of the green axis
onto the chromaticity plane as the u axis, and the cross prod-
uct of u and N being defined as the v axis. In our example,
each log value for the materials A, B, C is projected onto the
chromaticity plane, and will therefore have a corresponding
u, v co-ordinate value in the plane that is a chromaticity value,
as shown in FIG. 5.

Thus, according to the technique disclosed in U.S. Pat. No.
7,596,266, the RGB values of each pixel in an image file 18
can be mapped by the CPU 12 from the image file value p(n,
m, R, G, B) to a log value, then, through a projection to the
chromaticity plane, to the corresponding u, v value, as shown
in FIG. 13. Each pixel p(n, m, R, G, B) in the image file 18 is
then replaced by the CPU 12 by a two dimensional chroma-
ticity value: p(n, m, u, v), to provide a chromaticity represen-
tation of the original RGB image. In general, for an N band
image, the N color values are replaced by N-1 chromaticity
values. The chromaticity representation is a truly accurate
illumination invariant representation because the BIDR
model upon which the representation is based, accurately and
correctly represents the illumination flux that caused the
original image.

According to a feature of the present invention, log chro-
maticity values are calculated for each color depicted in an
image file 18 input to the CPU 12 for identification of regions
of'the uniform reflectance (Type B tokens). For example, each
pixel of a Type C token will be of approximately the same
color value, for example, in terms of RGB values, as all the
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other constituent pixels of the same Type C token, within the
noise level of the equipment used to record the image. Thus,
an average of the color values for the constituent pixels of
each particular Type C token can be used to represent the
color value for the respective Type C token in the log chro-
maticity analysis.

FIG. 14 is a flow chart for determining a list of colors
depicted in an input image, for example, an image file 18. In
step 500, an input image file 18 is input to the CPU 12 for
processing. In steps 502 and 504, the CPU 12 determines the
colors depicted in the input image file 18. In step 502, the
CPU 12 calculates an average color for each Type C token
determined by the CPU 12 through execution of the routine of
FIG. 64, as described above, for a list of colors. The CPU 12
can be operated to optionally require a minimum token size,
in terms of the number of constituent pixels of the token, or a
minimum seed size (the NxN array) used to determine Type C
tokens according to the routine of FIG. 64, for the analysis.
The minimum size requirements are implemented to assure
that color measurements in the list of colors for the image are
an accurate depiction of color in a scene depicted in the input
image, and not an artifact of blend pixels.

Blend pixels are pixels between two differently colored
regions of an image, as noted above. If the colors between the
two regions are plotted in RGB space, there is a linear tran-
sition between the colors, with each blend pixel, moving from
one region to the next, being a weighted average of the colors
of the two regions. Thus, each blend pixel does not represent
a true color of the image. The CPU 12 can eliminate tokens
consisting of blend pixel from the analysis via the blend pixel
image created in step 1018 of FIG. 3c.

In step 504, the CPU 12 can alternatively collect colors at
the pixel level, that is, the RGB values of the pixels of the
input image file 18, as shown in FIG. 2. The CPU 12 can be
operated to optionally require each pixel of the image file 18
used in the analysis to have a minimum stability or local
standard deviation via a filter output, for a more accurate list
of colors. For example, second derivative energy can be used
to indicate the stability of pixels of an image.

In this approach, the CPU 12 calculates a second derivative
at each pixel, or a subset of pixels disbursed across the image
to cover all illumination conditions of the image depicted in
an input image file 18, using a Difference of Gaussians,
Laplacian of Gaussian, or similar filter. The second derivative
energy for each pixel examined can then be calculated by the
CPU 12 as the average of the absolute value of the second
derivative in each color band (or the absolute value of the
single value in a grayscale image), the sum of squares of the
values of the second derivatives in each color band (or the
square of the single value in a grayscale image), the maximum
squared second derivative value across the color bands (or the
square of the single value in a grayscale image), or any similar
method. Upon the calculation of the second derivative energy
for each of the pixels, the CPU 12 analyzes the energy values
of'the pixels. There is an inverse relationship between second
derivative energy and pixel stability, the higher the energy, the
less stable the corresponding pixel.

In step 506, the CPU 12 outputs a list or lists of color (after
executing one or both of steps 502 and/or 504). According to
a feature of the present invention, all of the further processing
can be executed using the list from either step 502 or 504, or
vary the list used (one or the other of the lists from steps 502
or 504) at each subsequent step.

FIG. 15 is a flow chart for determining an orientation for a
log chromaticity representation, according to a feature of the
present invention. For example, the CPU 12 determines an
orientation for the normal N, for a log chromaticity plane, as

10

15

20

25

30

35

40

45

50

55

60

65

32
shown in FIG. 5. In step 210, the CPU 12 receives a list of
colors for an input file 18, such as a list output in step 506 of
the routine of FIG. 14. In step 512, the CPU 12 determines an
orientation for a log chromaticity space.

As taught in U.S. Pat. No. 7,596,266, and as noted above,
alignment of the chromaticity plane is represented by N, N
being a vector normal to the chromaticity representation, for
example, the chromaticity plane of FIG. 13. The orientation is
estimated by the CPU 12 thorough execution of any one of
several techniques. For example, the CPU 12 can determine
estimates based upon entropy minimization, manual selec-
tion by a user or the use of a characteristic spectral ratio for an
image of an input image file 18, as fully disclosed in U.S. Pat.
No. 7,596,266.

For a higher dimensional set of colors, for example, an
RYGB space (red, yellow, green, blue), the log chromaticity
normal, N, defines a sub-space with one less dimension than
the input space. Thus, in the four dimensional RYGB space,
the normal N defines a three dimensional log chromaticity
space. When the four dimensional RYGB values are projected
into the three dimensional log chromaticity space, the pro-
jected values within the log chromaticity space are unaffected
by illumination variation.

In step 514, the CPU 12 outputs an orientation for the
normal N. As illustrated in the example of FIG. 13, the normal
N defines an orientation for au, v plane in a three dimensional
RGB space.

FIG. 16 is a flow chart for determining log chromaticity
coordinates for the colors of an input image, as identified in
steps 502 or 504 of the routine of FIG. 14, according to a
feature of the present invention. In step 520, a list of colors is
input to the CPU 12. The list of colors can comprise either the
list generated through execution of step 502 of the routine of
FIG. 14, or the list generated through execution of step 504. In
step 522, the log chromaticity orientation for the normal, N,
determined through execution of the routine of FIG. 15, is
also input to the CPU 12.

In step 524, the CPU 12 operates to calculate a log value for
each color in the list of colors and plots the log values in a
three dimensional log space at respective (log R, log G, log B)
coordinates, as illustrated in FIG. 13. Materials A, B and C
denote log values for specific colors from the list of colors
input to the CPU 12 in step 520. A log chromaticity plane is
also calculated by the CPU 12, in the three dimensional log
space, with u, v coordinates and an orientation set by N, input
to the CPU 12 in step 522. Each u, v coordinate in the log
chromaticity plane can also be designated by a corresponding
(log R, log G, log B) coordinate in the three dimensional log
space.

According to a feature of the present invention, the CPU 12
then projects the log values for the colors A, B and C onto the
log chromaticity plane to determine a u, v log chromaticity
coordinate for each color. Each u, v log chromaticity coordi-
nate can be expressed by the corresponding (log R, log G, log
B) coordinate in the three dimensional log space. The CPU 12
outputs a list of the log chromaticity coordinates in step 526.
The list cross-references each color to a u, v log chromaticity
coordinate and to the pixels (or a Type C tokens) having the
respective color (depending upon the list of colors used in the
analysis (either step 502 (tokens) or 504 (pixels))).

FIG. 17 is a flow chart for optionally augmenting the log
chromaticity coordinates for pixels or Type C tokens with
extra dimensions, according to a feature of the present inven-
tion. In step 530, the list of log chromaticity coordinates,
determined for the colors of the input image through execu-
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tion of the routine of FIG. 16, is input to the CPU 12. In step
532, the CPU 12 accesses the input image file 18, foruse in the
augmentation.

In step 534, the CPU 12 optionally operates to augment
each log chromaticity coordinate with a tone mapping inten-
sity for each corresponding pixel (or Type C token). The tone
mapping intensity is determined using any known tone map-
ping technique. An augmentation with tone mapping inten-
sity information provides a basis for clustering pixels or
tokens that are grouped according to both similar log chro-
maticity coordinates and similar tone mapping intensities.
This improves the accuracy of a clustering step.

In step 536, the CPU 12 optionally operates to augment
each log chromaticity coordinate with x, y coordinates for the
corresponding pixel (or an average of the x, y coordinates for
the constituent pixels of a Type C token) (see FIG. 2 showing
a P (1,1) to P (N, M) pixel arrangement). Thus, a clustering
step with x, y coordinate information will provide groups in a
spatially limited arrangement, when that characteristic is
desired.

In each of steps 534 and 536, the augmented information
can, in each case, be weighted by a factor w, and w,, w,
respectively, to specify the relative importance and scale of
the different dimensions in the augmented coordinates. The
weight factors w, and w,, w; are user-specified. Accordingly,
the (log R, log G, log B) coordinates for a pixel or Type C
token is augmented to (log R, log G, log B, T*w, x*w, y*w,)
where T, x and y are the tone mapped intensity, the x coordi-
nate and the y coordinate, respectively.

In step 538, the CPU 12 outputs a list of the augmented
coordinates. The augmented log chromaticity coordinates
provide accurate illumination invariant representations of the
pixels, or for a specified regional arrangement of an input
image, such as, for example, Type C tokens. According to a
feature of the present invention, the illumination invariant
characteristic of the log chromaticity coordinates is relied
upon as a basis to identify regions of an image of a single
material or reflectance, such as, for example, Type B tokens.

FIG. 18 is a flow chart for clustering the log chromaticity
coordinates, according to a feature of the present invention. In
step 540, the list of augmented log chromaticity coordinates is
input the CPU 12. In step 542, the CPU 12 operates to cluster
the log chromaticity coordinates. The clustering step can be
implemented via, for example, a known k-means clustering.
Any known clustering technique can be used to cluster the log
chromaticity coordinates to determine groups of similar log
chromaticity coordinate values. The CPU 12 correlates each
log chromaticity coordinate to the group to which the respec-
tive coordinate belongs. The CPU 12 also operates to calcu-
late a center for each group identified in the clustering step.
For example, the CPU 12 can determine a center for each
group relative to a (log R, log G, log B, log T) space.

In step 544, the CPU 12 outputs a list of the cluster group
memberships for the log chromaticity coordinates (cross ref-
erenced to either the corresponding pixels or Type C tokens)
and/or a list of cluster group centers.

As noted above, in the execution of the clustering method,
the CPU 12 can use the list of colors from either the list
generated through execution of step 502 of the routine of FIG.
14, or the list generated through execution of step 504. In
applying the identified cluster groups to an input image, the
CPU 12 can be operated to use the same set of colors as used
in the clustering method (one of the list of colors correspond-
ing to step 502 or to the list of colors corresponding to step
504), or apply a different set of colors (the other of the list of
colors corresponding to step 502 or the list of colors corre-
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sponding to step 504). If a different set of colors is used, the
CPU 12 proceeds to execute the routine of FIG. 19.

FIG. 19 is a flow chart for assigning the log chromaticity
coordinates to clusters determined through execution of the
routine of FIG. 18, when a different list of colors is used after
the identification of the cluster groups, according to a feature
of the present invention. In step 550, the CPU 12 once again
executes the routine of FIG. 8, this time in respect to the new
list of colors. For example, if the list of colors generated in
step 502 (colors based upon Type C tokens) was used to
identify the cluster groups, and the CPU 12 then operates to
classify log chromaticity coordinates relative to cluster
groups based upon the list of colors generated in step 504
(colors based upon pixels), step 550 of the routine of FIG. 19
is executed to determine the log chromaticity coordinates for
the colors of the pixels in the input image file 18.

In step 552, the list of cluster centers is input to the CPU 12.
In step 554, the CPU 12 operates to classify each of the log
chromaticity coordinates identified in step 550, according to
the nearest cluster group center. In step 556, the CPU 12
outputs a list of the cluster group memberships for the log
chromaticity coordinates based upon the new list of colors,
with a cross reference to either corresponding pixels or Type
C tokens, depending upon the list of colors used in step 550
(the list of colors generated in step 502 or the list of colors
generated in step 504).

FIG. 20 is a flow chart for detecting regions of uniform
reflectance based on the log chromaticity clustering accord-
ing to a feature of the present invention. In step 560, the input
image file 18 is once again provided to the CPU 12. In step
562, one of the pixels or Type C tokens, depending upon the
list of colors used in step 550, is input to the CPU 12. In step
564, the cluster membership information, from either steps
544 or 556, is input to the CPU 12.

In step 566, the CPU 12 operates to merge each of the
pixels, or specified regions of an input image, such as, for
example, Type C tokens, having a same cluster group mem-
bership into a single region of the image to represent a region
ofuniform reflectance (Type B token). The CPU 12 performs
such a merge operation for all of the pixels or tokens, as the
case may be, for the input image file 18. In step 568, the CPU
12 outputs a list of all regions of uniform reflectance (and also
of similar tone mapping intensities and X, y coordinates, if the
log chromaticity coordinates were augmented in steps 234
and/or 236). It should be noted that each region of uniform
reflectance (Type B token) determined according to the fea-
tures of the present invention, potentially has significant illu-
mination variation across the region.

In a further exemplary embodiment of the present inven-
tion, the CPU 12 (executing as the operators block 28) com-
piles lists of Type B tokens separately generated through each
of'and/or a combination of one or more of the arbitrary bound-
ary removal, adjacent planar token merging, local token
analysis and log chromaticity clustering techniques. The
determination of the combination of techniques used depends
in part on whether a particular region of the image was filtered
because of texturing of the image. Since each Type B token
generated through the described techniques likely represents
a single material under varying illumination conditions,
merging sufficiently overlapping Type B tokens generated
through the use of varying and different techniques, provides
a resulting, merged Type B token that represents a more
extensive area of the image comprising a single material, and
approaches the extent of'a Type A token.
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Sufficiently overlapping can be defined by satisfaction of
certain pixel characteristic criteria, such as, for example:

A) The two Type B tokens have at least n of the original Type
C tokens in common, for example, n=1

B) The two Type B tokens have at least n pixels in common,
for example, n=20

C) The two Type B tokens have at least n % overlap, that is at
least n % of the pixels in a first one of the two Type B tokens
are also found in the second one of the two Type B tokens or
vice versa, wherein, for example n %=10%.

D) The percentage of pixels in a smaller one of the two Type
B tokens, also found in the larger one of the two Type B tokens
is above a preselected threshold, for example 15%.

E) A preselected combination of criteria A-D.

Merging of two sufficiently overlapping Type B tokens can
be accomplished via a mathematical operation such as execu-
tion of the union find algorithm discussed above. In the case
of'two overlapping Type B tokens that do not satisfy the above
discussed criteria, the overlapping pixels of the two tokens
can be assigned to the larger one of the two Type B tokens.

Referring once again to FIG. 4, as a result of execution by
the Type C tokenization block 35 and/or the operators block
28 (via the CPU 12) of the token generation and merging
techniques according to features of the present invention, an
image can be accurately segmented into tokens representing
discrete materials depicted in the scene (Type B tokens) and
tokens representing regions of robust similar color (Type C
tokens), thus providing a basis for computational efficiencies,
as the token representations capture spatio-spectral informa-
tion of a significant number of constituent pixels. The service
provider 24 stores all of the Type C and Type B tokens gen-
erated through execution of the above described token gen-
eration techniques, along with the relevant token map infor-
mation, for example, as determined during execution of the
adjacent planar token merging technique, and cross-refer-
ences the stored operator results to the associated selected
image file 18, for use in any segregation processing of the
selected image. The cross reference information also includes
information on the various selectively varied representations
(image files 184 . . . 18n) that may have been subject to a
tokenization operation.

In our example of a same illumination constraint, the ser-
vice provider 24 identifies Type C and Type B tokens as the
operators required by the selected constraint. The Type C
tokenization block 35 generated the Type C tokens. The ser-
vice provider 24 operates the operators block 28 to execute
the above described techniques, to generate the relevant Type
B tokens for the image 32, as well as a token map. The
constraint builder 26 organizes the generated token operators
according to the exemplary matrix equation, [A] [x]=[b], for
input to the solver 30. In the same illumination constraint, the
constraining relationship of the relevant constraint generator
software module is that adjacent Type C tokens, as indicated
by the token map information, are lit by the same illumina-
tion, unless the adjacent Type C tokens are part of the same
Type B token.

According to the multi-resolution exemplary embodiment
of the present invention, the tokenization processes can be
executed by the CPU 12 in respect to the original image file 18
or any of the selectively varied representations, image files
18a . . . 18n, and constraints applied at any level.

Each Type C token stored by the service provider 24 is
identified by a region ID, and includes a listing of each con-
stituent pixel by row and column number (and a cross refer-
ence to the associated image file wherein the token was iden-
tified (image files 18, 184 . . . 18%)). Each pixel of a Type C
token will be of approximately the same color value, for
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example, in terms of RGB values, as all the other constituent
pixels of the same Type C token, within the noise level of the
equipment used to record the image. An average of the color
values for the constituent pixels of each particular Type C
token can be used to represent the color value for the respec-
tive Type C token. Each Type B token is identified by con-
stituent Type C tokens, and thus can be processed to identify
all of its constituent pixels via the respective constituent Type
C tokens.

Pursuant to a feature of the present invention, a model for
image formation reflects the basic concept of an image as
comprising two components, material and illumination. This
relationship can be expressed as: [=MIL, where I is the image
color, as recorded and stored in the respective image file 18
and/or convolved in representations 18a . . . 18n, M the
material component of the recorded image color and L. the
illumination component of the recorded image color. The I
value for each Type C token is therefore the average color
value for the recorded color values of the constituent pixels of
the token.

Thus: log(I)=log (ML)=log (M)+log(L). This can be
restated as i=m+1, where i represents log(l), m represents
log(M) and 1 represents log(L). In the constraining relation-
ship of the same illumination constraint, in an example where
three Type C tokens, a, b and ¢, (see FIG. 21) are adjacent (and
not within the same Type B token, (as can be shown by a
comparison of row and column numbers for all constituent
pixels)), 1,=1,=1.. Since: 1 =i,-m, 1,=i,-m,, and 1 =i_-m_
these mathematical relationships can be expressed as (1)m_+
(-Dm,+HOm,~(i,i,). (Dm,+O)m,+(-Dm,~G,~i,) and
(O)m+(D)m,+(-1Dm =(,-1,).

FIG. 21 shows a representation of an [A] [x]=[b] matrix
equation for the mathematical relationships of the example of
the three adjacent Type C tokens a, b and ¢ described above,
as constrained by the same illumination constraint: the adja-
cent Type C tokens a, b and ¢ are at the same illumination. In
the matrix equation of FIG. 15, the various values for the log
(D), in the [b] matrix, are known from the average recorded
pixel color values for the constituent pixels of the adjacent
Type C tokens a, b and ¢, generated by the Type C tokeniza-
tion block 35 from the image selected for segregation. The
[A] matrix of 0’s, 1’s and -1’s, is defined by the set of
equations expressing the selected same illumination con-
straint, as described above. The number of rows in the [A]
matrix, from top to bottom, corresponds to the number of
actual constraints imposed on the tokens, in this case three,
the same illumination between three adjacent Type C tokens.
The number of columns in the [A] matrix, from left to right,
corresponds to the number of unknowns to be solved for,
again, in this case, three. Therefore, the values for the material
components of each Type C token a, b and ¢, in the [x] matrix,
can be solved for in the matrix equation. It should be noted
that each value is actually a vector of three values correspond-
ing to the RGB color bands of our example.

Accordingly, the matrix equation of FIG. 21, as arranged
by the constraint builder 26, is input by the constraint builder
26 to the solver 30 for an optimized solution for the values of
the material components of the adjacent Type C tokens a, b
and c of the selected image. As noted above, in the exemplary
GUI embodiment of the present invention, a user selects one
of several mathematical techniques for finding the optimal
solution to the system of constraint equations, [A] [x]=[b].
The CPU 12 configures the solver 30 according to the math-
ematical operation selected by the user.

For example, in a standard least squares solver, the matrix
equation is restated as ‘underset{x}{min}(Ax-b)>. The
solver 30 then executes the least squares operation to deter-
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mine optimized values for each of m,, m, and m_. The solver
30 can then proceed to generate and display a material image
based upon the optimal m,,, m, and m_ values. In the material
image, the m,, m, and m_ values are substituted for the origi-
nally recorded RGB values, for each pixel of the respective
tokens. The solver 30 can proceed to also generate an illumi-
nation image from the known recorded image valuesi,, i,, i,
and the determined m,, m, and m_ values, utilizing the model
expressed by i=m+l.

Each of the material and illumination images are displayed
on the monitor 20, via, for example, the GUI (see FIG. 5) and
can be stored by the service provider 24, and cross-referenced
to the original image file 18. According to a feature of the
present invention, intrinsic images generated from the repre-
sentations image files 18a . . . 18 by performance of the
above described spatio-spectral operator/constraint/solver
process, are also stored by the service provider 24.

As noted above, the spatio-spectral operator/constraint/
solver process can be efficiently executed by the CPU 12 first
in respect of the relatively coarse representation depicted in
image file 18a. Thereafter, the solver (executing via the CPU
12) is constrained by the weighted average for color equation
described above, when solving for an illumination image
and/or material image for the fine scale original image file 18.
Moreover, according to a further exemplary embodiment of
the present invention, the spatio-spectral operator/constraint/
solver process can be executed by the CPU 12 selectively
relative to the various representations of the image. For
example, only regions of the image file 18 having edges, are
tokenized, while all regions of uniform color within the rela-
tively coarse image file 18a are tokenized, for a division of
processing, as described above.

FIG. 22 shows a representation of an [A] [x]|=[b] matrix
equation for three adjacent Type C tokens a, b and c, as
constrained according to a further exemplary embodiment of
the present invention. The same illumination constraint dis-
cussed above, with reference to FIG. 21, enforces a strict
solution between the tokens a, b and ¢, according to the same
illumination constraint imposed upon the tokens in the illus-
trated example. In the further exemplary embodiment of the
present invention, a soft, weighted constraint can be used to
provide a more accurate segregation of an image into the
intrinsic material reflectance and illumination components.
The constraint of the further exemplary embodiment is based
upon the BIDR model and constrains all color band variations
into one integral constraining relationship.

According to the further exemplary embodiment of the
present invention, each constraint between any two image
locations, for example, Type C tokens i and j, is expressed by
the log color space equation: w,*(Mi-Mj)=w,*(a,V, +(1-
a,;)B,), where Mi and Mj are log color space values for the
material reflectance component of the tokens i and j, respec-
tively, V,; is a difference vector to provide a gradient magni-
tude defined by V,=I,-L, where I, and I, are the recorded log
color space values for the color and intensity of the tokens i
and j, respectively, B, is the component of V,; that is not
aligned with illumination change and is a vector defined by
B,~V,-(V;N), where N is the BIDR normal, as described
above, o, is a scalar value based upon a smooth scalar func-
tion o that varies from 0 to 1, as a function of the degree that
the change expressed by 1,~1, corresponds to an illumination
change or amaterial reflectance change, and w,; is a constraint
confidence weight that specifies the importance of the con-
straint in the solve of the [A] [x]=[b] matrix equation.

Thus, the w,;*(Mi-Mj)=w,*(c.,,V,+(1-0;)B,) constraint
equation, according to the present invention, provides a flex-
ible, weighted constraint relationship that accurately reflects
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the nature of color change, as a function of spatio-spectral
information represented by the BIDR model, between any
image locations, for example, between the locations of tokens
iand j, and expresses color change as caused by an illumina-
tion change, or a material reflectance change or a combination
of both. The constraint relationship therefore can be imple-
mented in a solve that results in a more precise and accurate
segregation of an image into the intrinsic material reflectance
and illumination components. The image locations selected
for inclusion in the constraint equation can be adjacent loca-
tions, or locations separated by a fixed amount, for example,
2, 3 or 4 pixels apart. A group of locations can also be
selected, for example, all tokens that are 2 to 10 pixels apart
from the ith token.

For example, assuming a constraint confidence weight of 1,
then when a,;=1, the equation reduces to a same illumination
constraint, Mi-Mj=V . In this form, the difference between
the material reflectance components of the two tokens 1 and j
equals all of'the color change expressed by the vector V., due
to the same illumination across the two tokens.

Again assuming a constraint confidence weight of 1, when
=0, the equation reduces to a same material constraint,
Mi-Mj=B,,. In this form, the difference between the two
tokens is almost the same, except for the value of B,, the
component of color change that is not aligned with the BIDR
normal, and therefore expresses some difference in material
reflectance.

In addition, the equation can be expressed in terms of an
anchor constraint, when material reflectance difference, or
the material reflectance itself, is constrained to a pre-deter-
mined value x. In that case, the equation is expressed as
Mi-Mj=x, when the difference in material reflectance
between two image locations is anchored to a pre-determined
amount, and Mi=x, when a single location, for example, a
token, is constrained to a pre-determined amount.

The w, *(Mi-Mj y=w *(a,V,+(1-a,)B,) constraint equa-
tion, according to the present invention, relies upon purity of
color values for an accurate measure of color change due to
illumination. In that connection, the known Gaussian and
Laplacian techniques for creating the pyramids, as described
above, tend to average or blur colors from a high resolution to
the next, lower resolution level. A pyramid arrangement that
preserves the purity of color from scale to scale is needed to
insure the accuracy of solve results.

Thus, according to a feature of the present invention, to
increase accuracy in a solve based upon constraints, a simple
mean method to create the pyramid is used to assure color
purity at each of and between the pyramid levels.

Referring now to FIG. 27, there is shown a flow chart for a
simple mean method for color pure down sampling according
to a feature of the present invention. The routine of FIG. 27
provides a downsampling correspondence map, as illustrated
in FIG. 28. FIG. 28 is a graphic representation of pixel loca-
tions at different scales of a scale-spaced pyramid, as shown
in FIG. 3b. The area designated as pixel i,,, in the lower
resolution level scale k+1, when downsampling to the higher
resolution level k, will be assigned the color of the pixel i, of
the corresponding 2x2 pixel region of the higher resolution
level k.

According to a feature of the present invention, the selec-
tion of the pixel i, in the corresponding 2x2 pixel region, for
color accurate downsampling mapping, is executed by the
CPU 12 via the routine of FIG. 27. The inputs for the CPU 12
to execute the routine of FIG. 27 include the original image
file 18, and the downsampling scale D (1600). In the example
of FIG. 28, the downsampling scale is 2, as a 2x2 pixel
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neighborhood of the high resolution level k is represented by
a single location, pixel i, of the k+1 level.

In step 1602, the CPU 12 operates to select the DxD neigh-
borhood corresponding to an image location for a low reso-
Iution, higher scale, for example, as shown in FIG. 28. In step
1604, the CPU 12 calculates the mean color for the pixels in
the DxD neighborhood. In step 1606, the CPU 12 operates to
select the pixel in the DxD neighborhood that most closely
matches the mean color value calculated in step 1604. In the
example of FIG. 28, the CPU 12 selects pixel i,. In step 1608,
the CPU 12 maps the color of the selected pixel from the DxD
neighborhood of the high resolution level to the current loca-
tion of the low level resolution, links pixels i, and i, ;, and
then stores the map indication (step 1610).

In step 1612, the CPU 12 repeats steps 1602-1610, for all of
the other locations of the current level of the pyramid. When
the map for the current level is complete, the CPU 12 pro-
ceeds to decision block 1614. In decision block 1614, the
CPU 12 checks the current level to determine if it is less than
the resolution of the lowest resolution level of the pyramid. If
no, the CPU proceeds back to step 1602, and begins the
routine again, up the pyramid, at the next, lower resolution
level of the pyramid. Ifyes, the CPU 12 proceeds to step 1616,
and exits the routine.

Referring now back to FIG. 3¢, step 10385 is executed by
the CPU 12 by selecting locations, for example three tokens a,
b, ¢, ata scale, for example, depicted at one of the levels of the
token pyramid, created according to the simple mean method,
input from block 1016 (as shown in FIG. 35). The CPU 12
also accesses the corresponding locations of the blend pixel
pyramid, input from block 1020, to verify that the selected
tokens are not blend pixel tokens. In the event that the selected
tokens are blend pixel tokens, the CPU 12 can operate to take
an action relative to the blend pixel tokens. For example, the
CPU 12 can eliminate the selected tokens from any con-
straint, or limit the inclusion to certain types of constraints,
for example, only same material constraints. Moreover, the
CPU 12 accesses the normal image pyramid, input from block
1026, to obtain BIDR normal information for the selected
tokens a, b, c.

As shown in the example of FIG. 22, the CPU 12 completes
step 10385 by organizing the constraints relative to the tokens
a, b, ¢ in the [A] [x]=[b] matrix equation, according to the
w,*(Mi-Mj)=(a,;V,+(1-c,;)B,)) weighted constraint equa-
tion. The CPU 12 also calculates the values for w,, and o, as
well as the values for V;; and B,;.

Referring now to FIG. 23, there is shown a flow chart for
executing the weighted constraint equation as a BIDR align-
ment constraint according to a feature of the present inven-
tion. The flow chart depicts operation by the CPU 12 for
calculating the values for w; and a,; and V;; and B, for
example, to complete step 10385, in spatial constraints
between locations of one level of the image pyramid, as
shown in FIG. 25a. In step 1500, the CPU 12 receives as input
the average recorded color value (I, and 1) for the constituent
pixels of each of tokens i and j, where i and j are one of the ab,
ac, or be pairs from the a, b, ¢ tokens of the example of FIG.
22.

In step 1500, the CPU 12 operates to compute the difter-
ence vector V by executing the equation V,=I-I, as
described above. The result of step 1500 is input to block
1502. The BIDR normal N accessed by the CPU 12 from
corresponding locations of the normal pyramid is also input to
block 1502. In block 1502, the CPU 12 applies the inputs (V;
and N) to compute the vector B;; by executing the equation
B,~V,~(V;N). The result of step 1500 is also input to deci-
sion block 1504.
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In decision block 1504, a user sets a selection to one of two
different modes corresponding to two different metrics for
calculating w,, and o, an angle metric and a distance metric.
In the event the angle metric is selected by a user, the CPU 12
proceeds to step 1506.

In step 1506, the CPU 12 computes the angle metric, a
BIDR alignment angle 6, the angle between the vector V and
the BIDR normal N, 6=cos™! (V-N).

In the event the distance metric is selected by a user, the
CPU 12 proceeds to step 1508. In step 1508, the CPU 12
computes the distance metric d, measured as the distance
between the projections on the log chromaticity plane (the u,
v plane perpendicular to the BIDR normal, as shown in FIG.
13) of the log color space values [, and 1.

In step 1510, the CPU 12 receives either the angle metric 0
(step 1506) or the distance metric d (step 1506), depending on
the user selection (step 1504). In step 1510, the CPU 12
applies a sigmoid function to obtain values for w,; and c.;;.

To that end, a user selects a sigmoid slope s (1512) and a
sigmoid threshold T (1514). These parameters set the rate and
the point of transition of the sigmoid function. The sigmoid
slope s is input to step 1510. In one exemplary embodiment of
the present invention, the sigmoid threshold T, set by the user,
can be scaled, based upon the magnitude of the vector V
(block 1516).

In the scaled threshold embodiment (block 1516), the sig-
moid threshold T set by the user is input to a decision block
1518. A user sets an indication whether to use illumination
smoothness in the constraints concatenated in the [A] [x]=[b]
matrix. If no, the CPU 12 proceeds to step 1524, for input to
step 1510, and the threshold T is applied as a fixed value,
without modification.

Ifyes, the sigmoid threshold T is input to step 1520. In step
1520, the CPU 12 references step 1504 to determine the mode
selected by a user, the angle metric mode or the distance
metric mode. Depending on the selected mode, the CPU 12
then references a threshold scale graph, for example, as
shown in FIGS. 26a and b. The threshold graphs shown in
FIGS. 264 and b can be adjusted according to an illumination
smoothness value input from block 1522. FIG. 26a shows the
scale adjustment for the threshold t for different values of the
vector V when the angle metric is used and FIG. 265 shows
the scale adjustment for the threshold © for different values of
the vector V when the distance metric is used. The CPU 12
operates to output the appropriate threshold value to step
1510.

In step 1510, the CPU 12 applies a sigmoid function, as
noted above, in either the angle metric mode or distance
metric mode, using the values for s and T input from steps
1512 and 1516, respectively, and either the angle or distance
value from one or the other of steps 1506 and 1508.

In the angle metric mode, the CPU 12 executes a sigmoid
function to compute o; as a function of 6: o, =1/ 14",
FIG. 24 shows a plot of the sigmoid function for the angle
metric mode, for values of 6 from 0° to 45°. As shown in FIG.
24, for low values of 0, for example 10° and lower, the value
of o, is 0. As noted above, when a; is 0, the constraint
equation reduces to a same material constraint, as shown on
the graph of FIG. 24. At low angles, the vector V is nearly
aligned with the BIDR normal, and thus, all color change is
due to illumination. For values higher than approximately
20°, the value of o, is 1. As also noted above, when o is 1, the
constraint equation reduces to a same illumination constraint
(or a smooth illumination, if set by a user in step 1518), as
shown on the graph of FIG. 24. Again, a large angle indicates
only a small color difference due to illumination, since the
vector V is not closely aligned with the BIDR normal.



US 9,158,973 Bl

41

In the distance metric mode, the CPU 12 executes a sig-
moid function to compute e, as a function of d: ., =1/1+
e @™ A sigmoid slope similar to the slope shown in FIG.
24 will plot the BIDR alignment weight, o, against the
distance metric d. For low values of d, the distance between
the image locations in the log chromaticity plane is small,
indicating similar material reflectance values for the loca-
tions, and thus, corresponding to a same material constraint.
Likewise, for high values of d, the distance between the image
locations in the log chromaticity plane is large, indicating
different material reflectance values for the locations, and
thus, corresponding to a same illumination constraint.

In step 1510, the CPU 12 also operates to calculate the
confidence weight, by executing the equation w,~1-4%q,, *
(1-0a). According to the confidence weight equation, the
confidence value is low in the area of the sigmoid curve at the
transition from a,=0 to @, =1. Thus, when ¢, =0 or o, ~1, the
confidence weight w;; is 1, and when a,,=0.5, the confidence
weight w,; is 0.

In one exemplary embodiment of the present invention,
when there is a strong same material constraint, for example
with a,;<0.1, the constraint is scaled to a higher weight con-
fidence level. The BIDR model is accurate at predicting a
situation when two locations of an image, for example, tokens
i and j, are of the same material reflectance. Accordingly,
instances when the scalar value a; is low, indicating a same
material constraint, the confidence weight w,, of the con-
straint is biased by a pre-selected scaling factor, for example,
50.

As illustrated in FIG. 3¢, an image pyramid is created in
step 1012. In another exemplary embodiment of the present
invention, the value for w,, is scaled as a function of the
pyramid level where the spatial constraints are written. Inas-
much as higher levels of the pyramid each have 1/D? pixels
less than the next lower level, constraints at each higher level
have less impact on the solution. To counteract the 1/D?
effect, constraint weights Wkl-j between image locations, for
example, between tokens i and j, at each level k of the pyra-
mid, are scaled, as follows: Wkl.j:Fk*Wij, where the scaling
factor F=P*I*, P being the processing scale, for example 1.
The processing scale specifies the relative strength of con-
straints written at different levels of the pyramid.

Upon completion of the execution of step 1510 by the CPU
12 to obtain values for .,; and w,;, the CPU 12 proceeds to step
1526. In step 1526, the CPU 12 operates to write the BIDR
alignment constraints shown in FIG. 22 with the values com-
puted in steps 1500, 1502 and 1510, for V;, B, , o, and w,
relative to each of the ab, ac, and be pairs from the a, b, ¢
tokens of the example of FIG. 22.

Referring once again to FIG. 3¢, step 1038a is executed by
the CPU 12 by selecting locations from different scales of the
scale-spaced image pyramid shown in FIG. 3b. By writing
constraints between pyramid-spaced locations, the con-
straints can be applied to a larger range of the image by
writing spatial constraints on higher levels (lower resolution)
of the pyramid, and also writing downsampling constraints
that connect, for example, tokens at a higher level, to the base
level.

Constraints between locations at different levels of the
image pyramid, using the color maps created by execution of
the routine of FIG. 27, can be written as anchor constraints. As
discussed above, the weighted constraint, when stated in the
context of an anchor constraint, is expressed as: Mi-Mj=x. In
this case, inasmuch as the map created via execution of the
routine of FIG. 27 results in the same color value for each of
the locations of the different levels forming a constraint, x=0.
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In addition, a weight w,; can be assigned to each anchor
constraint. Due to the known equality for color values for the
two locations of each anchor constraint, the anchor con-
straints are strong, and the weight assigned to each constraint
is set at a high value to insure that higher levels of the pyramid
have a significant effect on the results at the lower levels.

Referring once again to FIG. 3¢, step 10384 is executed by
the CPU 12, in the event the image processing is relative to a
video recording, by selecting locations from temporally
spaced frames of the video, as shown in FIG. 254. In a video,
each frame can be processed independently from one another,
however, adjacent frames often have a significant amount of
redundancy, and temporal constraints can be used to provide
more coherent and flicker-free videos for corresponding
intrinsic material reflectance and illumination videos. A slid-
ing temporal window is used relative to each frame k of the
video, and a fixed number of previous frames.

According to a feature of the present invention, temporal
constraints can be implemented according to a color similar-
ity constraint concept, including, in one exemplary embodi-
ment of the present invention, the anchor constraint variation,
expressed as follows: W, *(Mi-Mj)=w" *(c,V, +(1-0)
B,), the same basic equation as discussed above, however
where the tokens i and j are from different video frames, token
iis from frame k and token j is from temporally spaced frame
k-n, where n is an integer indicating the number of frames
between k and previous frame k-n, n being greater than or
equal to 1, and further, where the temporal constraint weight
w”,; is scaled as a function of the distance n between a tem-
porally spaced frame and frame k.

Referring now to FIG. 29, there is shown a flow chart for a
temporal constraint. In step 1700, the CPU 12 receives as an
input token i from the image file 18 depicting frame k of a
video. The CPU 12 then proceeds to the decision block 1702.
In decision block 1702, the CPU 12 checks a user setting as to
a mode for temporal constraints. If the mode is set to use
BIDR alignment constraints, the CPU 12 proceeds to step
1704, and writes BIDR alignments constraints. If the mode is
not set to use BIDR alignment constraints, the CPU 12 pro-
ceeds to step 1706, and writes anchor constraints.

In either mode, the CPU 12 writes the constraints using
scaling factors s, s,, . . ., s~ The scaling factors determine
how much to scale the confidence weight of a constraint as a
function of how many frames there are between the k frame
and the k-n frame of a constraint. The scaling factors are
calculated to insure that frames closer to the k frame have a
stronger effect on results in a solve, than frames further away.
To that end, each of a temporal sigma o, (1708) and temporal
weight T, (1710) is set by a user and input to the CPU 12. The
temporal sigma is used to determine how many frames N
there are from k-1 to k-n. The temporal weight indicates the
strength temporal constraints have relative to spatial con-
straints.

In step 1712, the CPU 12 uses the temporal sigma to
compute N. In an exemplary embodiment of the present
invention, the N=round(3*c,). In step 1714, the CPU 12
calculates the scaling factors s, s,, . . . , S, as follows:

5, =T, *exp(-12/2 02).

Upon calculation of the scaling factors s, s,, . . ., sy, the
CPU 12 outputs the results to each of steps 1704 and 1706.

When use BIDR alignment constraints is set, the CPU 12
proceeds to step 1704. In step 1704, the CPU writes a spatial
BIDR alignment constraint for token i in frame k, and a set of
temporal constraints for frames k-1, . . . , k=N, as per the
routine of FIG. 23, however with w”;; in each temporal con-
straint calculated as w”,=s, *w,..
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When use BIDR alignment constraints is not set, the CPU
12 proceeds to step 1706. In step 1706, the CPU writes anchor
constraints between token i in frame k and the closest match-
ing token in each of frames k—-1,k-2, ... , k-N, via execution
of the routine of FIG. 30. Referring now to FIG. 30, in step
1720, token i is input to the CPU 12. In step 1722, the CPU 12
computes a color flow vector for token i. In an exemplary
embodiment of the present invention, as shown in FIG. 3¢,
color flow vectors are computed and stored in a color flow
vector pyramid (see steps 1028, 1030 of FIG. 3¢, and FIG.
3g). Accordingly, step 1722 can be executed via a reference to
the color flow pyramid to obtain the color flow vector for
token 1.

In step 1724, the CPU 12 uses the color flow vector to
identify a corresponding token j in the k—n frame. In step 1726
the CPU 12 operates to compute the color difference between
token i and token j: II,-L|, then proceeds to decision block
1728.

In decision block 1728, the CPU 12 determines if II,-1, is
less than a threshold, for example, a threshold indicating a
color difference between token i and token j that corresponds
to a color similarity weight, a., that is less than 0.1. If yes, the
CPU 12 proceeds to step 1730.

In step 1730, the CPU 12 writes a strong same material
constraint between token i and token j: Mi-Mj=0. The CPU
12 then returns the constraint for concatenation in the [A]
[x]=[b] matrix (1732).

If I1,-LI is greater than the threshold, the CPU 12 then
proceeds to step 1734. In step 1734, the CPU 12 writes
weakly weighted smooth illumination constraint between
token iand token j: Mi-Mj=I,-L. The CPU 12 then returns the
constraint for concatenation in the [A] [x]=[b] matrix (1732).

In an alternative exemplary embodiment of the present
invention, an internal control can be set to turn off the thresh-
old process. In decision block 1736, if set to use a hard
threshold, the CPU 12 executes from decision block 1728. If
not set to use a hard threshold, the CPU 12 proceeds to step
1738.

In step 1738, the CPU 12 applies a sigmoid function to
obtain a as a function of IL-LI, as follows: a=1/1+
e~ #-U-™) where s and T are sigmoid slope and threshold
parameters set by a user.

In step 1740, the CPU 12 writes a constraint between token
i and token j, using the o determined from the sigmoid curve.

In this case, for example, in a weighted constraint, when
0<0.1, a same material constraint is written, with w,=1 or
higher, and in the case when a>0.1, a weak, same illumina-
tion constraint is written, with, for example, Wl.j:1e"5. The
CPU 12 then returns the constraint for concatenation in the
[A] [x]=[b] matrix (1732).

Moreover, the sigmoid threshold T can be varied as a func-
tion of color saturation. A scaling factor is used to vary the
sigmoid threshold, with the scaling factor being set to
increase the threshold as color saturation increases.

Referring once again to FIG. 3¢, step 1038¢ is executed by
the CPU 12 to write constraints based upon user applied
scribbles. The CPU 12 writes a constraint for each scribble,
based upon the type of scribble. For example, in the case of a
same reflectance scribble (all pixels constituting the scribble
are of the same material reflectance), a same material con-
straint is written.

Upon completion of each of steps 10384-10384, the CPU
12 proceeds to step 1040. In step 1040, the CPU 12 concat-
enates all of the constraints in the [A] [x]=[b] matrix, as
shown in the example of FIG. 22. In step 1042, the CPU 12
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solves the matrix equation, for example, executing the routine
described for the solve of the matrix equation shown in the
example of FIG. 21.

FIG. 31 is a generalized functional block diagram for the
service provider 24 constraint builder 26 and solver 30 of
FIG. 4. To summarize the above described constraint
examples in a general scheme, a selection is made of an image
32, (one or more of image file 18, 18a, . . . 18%) and, for each
selected image 32, a number of constraint generators from a
set of constraint generators 1, 2, . . . N, (the constraint gen-
erator software modules) for example, by a user, via the GUI.
The set of constraint generators 1-N includes the constraints
described above, and any additional constraining relation-
ships developed as a function of spatio-spectral information
for an image. The above described set of constraints is pro-
vided as an example. The present invention contemplates any
constraining relationship based upon spatio-spectral opera-
tors, that provides a logical deduction regarding material and
illumination aspects of an image, and thus a basis for con-
structing matrices [A] and [b] to define a set of equations
whose optimal solution captures intrinsic illumination and
material components of a given image.

Likewise, a set of operators 1-M, generated by the Type C
tokenization block 35 or the operators block 28, includes all
operators defined in the constraint generator modules 1-N. As
shown in FIG. 31, the service provider 24 provides all of the
operators 1-M, as required by the selected constraint genera-
tors 1-N and further couples the selected constraint genera-
tors 1-N to a constraint assembly 39 via a logical switch 40
(both configured within the constraint builder 26). In the
event any of the operators 1-M for a selected image 32 are not
already stored by the service provider 24, the service provider
24 utilizes the operators block 28 to compute such operators
on demand, in the manner described above. The constraint
assembly 39 constructs a separate [ A] [x]=[b] matrix for each
one of the selected constraint generators, as a function of the
operators and the constraining relationships defined in the
respective constraint generators 1-N. In each case, the [A]
[x]=[b] matrix is constructed in a similar manner as described
above for the same illumination and BIDR alignment
examples.

Upon completion of the construction of the system of equa-
tions [A], [x]=[b],, for each of the selected constraint genera-
tors, i={1, 2, . . . N}, the constraint assembly 39 concatenates
the constituent matrices [A],, [b],, from each constraint gen-
erator. Since each of the concatenated equations may contain
a different subset of the unknowns, [x], the assembly is per-
formed such that corresponding columns of individual matri-
ces [A],, that constrain particular unknowns in [x], are
aligned. The concatenated matrices, [A] [x]=[b], are then
input to the solver 30, for solution of the unknowns in the
complete [x] vector, pursuant to the selected optimization
procedure, for output of intrinsic images 34. The individual
constraints within the concatenated matrices, [A] [x]=[b], can
be weighted relative to one another as a function of factors
such as perceived importance of the respective constraint,
strength or empirically determined confidence level, as, for
example, the BIDR alignment and confidence weights
described above.

The above described example of a same illumination con-
straint utilizes Type C token and Type B token spatio-spectral
operators. These token operators provide an excellent repre-
sentation of images that include large surface areas of a single
material, such as are often depicted in images including man-
made objects. As such, processing of the image at a coarse
scale of resolution, for example, at the level of image file 184,
is possible. However, in many natural scenes there are often
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large areas of highly textured regions, such as sand, grass,
stones, foliage, and so on. Each texture has an intrinsic scale,
which can be correlated to one of the scale representations of
image files 18a, . . . 18n. As noted above, identification of
Type B tokens using Type C tokens, can be difficult in an
image texture, particularly at a fine scale of resolution.
According to a further feature of the present invention, a
texton histogram operator provides a mechanism for captur-
ing statistically uniform spatial variations of textured regions
in a manner that is useful in a constraint based optimization,
for example, as expressed by the [A] [x]=[b] matrix equation.

Thus, according to this feature of the present invention,
rather than generating Type C tokens in textured regions of an
image, from intensity histograms, for use in identifying Type
B tokens, as described above, texture tokens are generated as
a species of Type B tokens, for use in a constraint. Such a
texture token analysis can be performed, for example, at a
preselected scale suitable to the scale of the texture, for amore
efficient and accurate analysis. In an exemplary embodiment
of the texton histogram operator, the operators block 28 con-
verts each pixel of the image (or pixels of those regions of an
image identified as comprising a texture) from the recorded
color band representation of the respective image file 18, such
as, for example, RGB color band values, to a two band rep-
resentation wherein the two bands comprise a texton label and
atexton histogram label. The two band representations for the
pixels are then used to identify texture tokens, as will appear.

A texton label for each pixel is generated through execu-
tion of a clustering process. A texture can be characterized by
a texture primitive (for example, in a grass texture, a single
blade of grass), and the spatial distribution of the primitive. A
texton analysis is an analytical method for characterizing a
texture primitive, for example via a clustering algorithm.
Clustering is a process for locating centers of natural groups
or clusters in data. In an exemplary embodiment of the present
invention, the data comprises pixel patches selected from
among the pixels of an image being segregated into material
and illumination components. For example, 3x3 pixel patches
are clustered into K different groups, with each group being
assigned a designating number (1,2,3, . . . K). The texton label
for each pixel of the 3x3 array is the group number of the
group to which the respective patch was assigned during the
clustering process.

To expedite execution of a clustering algorithm, random
samples of 3x3 patches can be selected throughout the image,
or region of the image identified as comprising a texture, for
processing in a clustering algorithm. After execution of the
clustering algorithm by the CPU 12 (operating as the opera-
tors block 28), each 3x3 patch of the image is assigned the
texton label of the closest one of the K group centers identi-
fied in the clustering process, as executed in respect of the
selected random samples.

To advantage, prior to execution of a clustering algorithm,
the pixels of the image are subject to an image intensity
normalization. In a clustering process utilizing an intensity-
based distance matrix, dark areas of an image may be placed
in a single group, resulting in an under representation of
groups for shadowed areas of a textured region of an image. A
normalization of the image provides a more accurate texton
representation for texture regions under varying illumination.
A normalized intensity for a pixel can be expressed by:

Lnorm (I =O((1, M)/ (1, ),
where i,,,,,,(n,m) is the normalized intensity for a pixel p(n,
m), i(n,m) is the intensity for the pixel p(n,m), as recorded in
the image file 18, and i,(n,m) is a blurred or low passed
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filtered version of the pixel p(n,m). For example, a 10 pixel
blur radius can be used in any standard blurring function.

Clustering can be executed according to any known clus-
tering algorithm, such as, for example, K means clustering
where there are K clusters or groups S,=1,2, .. . K, and p, is the
mean point or center point of all the data points x; €S,. In our
example, each x; comprises a selected 3x3 pixel patch
arranged as a 9x1 vector of the nine pixels in the patch (27
elements total, including the RGB values of each of the nine
pixels of the vector). As noted above, each mean point |, is
assigned a texton label, 1, 2,3 . . . K, that becomes the texton
label for any pixel of a 3x3 patch clustered into the group for
which the respective mean point is the center.

According to an exemplary embodiment of the present
invention, the CPU 12 executes the algorithm by initially
partitioning the selected 9x1 vectors, representing 3x3 pixel
patches of the image, into K initial groups S,. The CPU 12
then calculates a center point L, for each group S,, utilizing an
intensity-based distance matrix. After determining a center
point p,, for each group S,, the CPU 12 associates each 9x1
vector to the closest center point 1, changing groups if nec-
essary. Then the CPU 12 recalculates the center points .. The
CPU 12 executes iterations of the steps of associating each
9x1 vector to the closest center point 1, and recalculating the
center points [, until convergence. Convergence is when
there is no need to change the group for any of the 9x1 vectors.
At that point, the CPU 12 assigns the group number for the
respective center point |, as the texton label for the pixels of
each vector in that group.

As noted above, pixels of 3x3 patches not selected as
samples for clustering are assigned the texton label of the
closest one of the K group centers 1, identified in the clus-
tering process, as executed in respect of the selected random
samples. A texton label map is stored by the service provider
24, and is coextensive with the pixel array of FIG. 2. In the
texton label map, for each pixel location, there is an indication
of' the respective texton label.

Upon completion of the texton label assignment for pixels
of'the image, the CPU 12 operates to generate a texton histo-
gram for each pixel to provide a representation of the spatial
variation of texton representations within a textured region of
the image. To that end, the CPU 12 accesses the texton label
map. At each pixel location within the texton label map, a
pixel patch of, for example, 21x21 pixels, is set up around the
current location. The 21x21 patch size is far greater than the
33 patch sized used to generate the texton representations,
s0 as to capture the spatial variations of the texture. A texton
histogram is then generated for the pixel location at the center
of the 21x21 patch, in a similar manner as the intensity
histogram described above. However, rather than bins based
upon color band values, in the texton histogram, there is a bin
for each texton label value, 1,2, 3 ... K. The count for each bin
corresponds to the number of pixels in the 21x21 patch hav-
ing the texton label value for the respective bin.

When a texton histogram is generated for each pixel of the
texton label map, the CPU 12 executes a second clustering
step. In the second clustering step, the texton histograms are
clustered using spectral clustering. Spectral clustering tech-
niques use a spectrum of a similarity matrix of data of interest,
(in our example, the texton histograms) to reduce the dimen-
sionality for clustering in fewer dimensions. A similarity
matrix for a given set of data points A can be defined as a
matrix S where S;; represents a measure of the similarity
between points i, jeA. In our example, eigenvectors of the
Laplacian are clustered using a mean shift. The distance met-
ric is a chi-squared distance of the histograms.
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A texton histogram label (1,2 . . . ) is assigned to each
cluster group defined by the clustering procedure. For each
pixel of the texton label map, the texton histogram label for
the cluster group corresponding to a texton histogram that is
nearest the texton histogram for the respective pixel, is
assigned to that pixel. Distance is defined as the chi-squared
histogram distance. Upon completion of the assignment of a
texton histogram label to each pixel, each pixel is now repre-
sented by a two band, texton label, texton histogram label
representation.

According to a feature of the present invention, the two
band, texton label, texton histogram label representations for
pixels of an image file 18 (or any of the selectively varied
representations 18aq, . . . 18z) canbe utilized in a constraint for
construction of an [A], [x]=[b], constituent within the concat-
enated matrices, [A] [x]=[b]. For example, it can be assumed
that aregion of an image wherein contiguous pixels within the
region all have the same two band, texton label, texton histo-
gram label representation, comprises a region of the same
mean material of a texture depicted in the image. Such a
region can be referred to as a texture token, a species ofa Type
B token. Thus, a constraint can be imposed that all Type C
tokens within the same texture token are of the same mean
material. In this constraint, the Type C tokens are the Type C
tokens generated from the color band values of the constituent
pixels by the Type C tokenization block 35.

While the above exemplary embodiment of the present
invention has been described with a user selecting constraint
generators and mathematical operations via a GUI, the image
segregation processing can be done in other operating modes,
such as automatically, with images, constraint generators and
mathematical operations being automatically selected, for
example, as a function of image parameters.

Referring once again to FIG. 34, in block 1006, the CPU 12
outputs the intrinsic images generated in the image segrega-
tion block 1004. Such intrinsic images can be advantageously
used in such diverse applications as object recognition, data
compression or for improved results in an image modifica-
tion. For example, a color correct gamma correction can be
achieved by performing an intensity adjustment on the illu-
mination image, and merging the intensity adjusted illumina-
tion image with the corresponding material image, for a color
correct, intensity adjusted output image.

In summary, the selectively varied representation embodi-
ment of the present invention provides modes of operation
that permit spatio-spectral operators to be computed and
applied at any one of several different representations of the
image, for example, a representation at a scale of resolution
that matches the intrinsic scale of an image feature. Also,
different areas of the image can be processed at different
scales, such as edge regions at a fine scale, and non-edge
regions at a coarse scale. Moreover, a constraint can be
applied over a limited extent of one representation of the
image and projected to a more coarse scale to extend the range
of the constraint. All of the various modes afforded by the
selectively varied representation embodiment of the present
invention improve the accuracy of an image segregation
operation, while providing efficiencies that speed up the per-
formance of the computer system 10. Moreover, the weighted
constraint provides a flexible, weighted constraint arrange-
ment that insures accurate results by efficiently accounting
for color change due to material reflectance, illumination or a
combination of both.

In the preceding specification, the invention has been
described with reference to specific exemplary embodiments
and examples thereof. It will, however, be evident that various
modifications and changes may be made thereto without
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departing from the broader spirit and scope of the invention as
set forth in the claims that follow. The specification and
drawings are accordingly to be regarded in an illustrative
manner rather than a restrictive sense.

What is claimed is:
1. An automated, computerized method for processing
multiple image files of a video, comprising the steps of:

providing at least two image files, each depicting an image
having image locations, in a computer memory;

selecting image locations i from a first image file k and j
from a second image file k-n, k-n being temporally
spaced n frames from image file k in the video;

setting a temporal constraint between the image locations
according to a log color space equation:

W (Mi-Mj)=w" * (o, Vi+(1-0)By),

wherein Mi and Mj are log color space values for the
material reflectance component of the image locations i
and j, respectively, V,, is a difference vector to provide a
gradient magnitude defined by V, =11, where I, and I,
are log color space values corresponding to color values
recorded in the image files, for the color and intensity of
the selected image locations i and j, respectively, B, is a
component of V. not aligned with illumination change
between the selected image locations and is a vector
defined by B,~V,~(V,N), where N is a BIDR normal,
o, is a scalar value based upon a smooth scalar function
a that varies from O to 1, as a function of a degree of
change expressed by I,-I, corresponding to one of an
illumination change or a material reflectance change,
and w” is a temporal constraint confidence weight cal-
culated as w”,=s,*w,, wherein w,; is a constraint weight
and s,, is a scaling factor determined as a function of the
n frames between the image file k and the image file k-n
frame of the video; and

solving the log color space equation to identify an intrinsic
component of the selected image locations.

2. The method of claim 1 wherein the scaling factor s, is

calculated according to an equation:

s,= T, *exp(-12/2672),

wherein T, is a pre-set temporal weight and o, is a temporal
sigma calculated as a function of n.
3. A device which comprises:
a computer; and
a memory storing at least two image files of a video, each
depicting an image having image locations;
the computer is arranged and configured to execute a rou-
tine to select image locations i from a first image file k
and j from a second image file k-n, k—-n being tempo-
rally spaced n frames from image file k in the video, set
a temporal constraint between the image locations
according to a log color space equation:

WM Mi-M=w" (o V+ (1-a)By),

wherein Mi and Mj are log color space values for the
material reflectance component of the image locations i
and j, respectively, V,; is a difference vector to provide a
gradient magnitude defined by V=11, where I, and I,
are log color space values corresponding to color values
recorded in the image files, for the color and intensity of
the selected image locations i and j, respectively, B, is a
component of V. not aligned with illumination change
between the selected image locations and is a vector
defined by B,=V,—~(V,N), where N is a BIDR normal,
o, is a scalar value based upon a smooth scalar function
a that varies from O to 1, as a function of a degree of
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change expressed by I,-I; corresponding to one of an
illumination change or a material reflectance change,
and w”;; is a temporal constraint confidence weight cal-
culated as w”;=s,*w,, wherein w,,; is a constraint weight
and s,, is a scaling factor determined as a function of the
n frames between the image file k and the image filek-n
frame of the video and

solve the log color space equation to identify an intrinsic
component of the selected image locations.

4. A computer program product, disposed on a non-transi-

tory computer readable media, the product including com-
puter executable process steps operable to control a computer
to: receive at least two image files of a video, each depicting
an image having image locations, select image locations i
from a first image file k and j from a second image file k—-n,
k-n being temporally spaced n frames from image file k in the
video, set a temporal constraint between the image locations
according to a log color space equation:

Wnij* (M_A/[]):anj*(azj Vij+(1_aij)Bij)>

wherein Mi and Mj are log color space values for the

material reflectance component of the image locations i
and j, respectively, V,; is a difference vector to provide a
gradient magnitude defined by V, =11, where I, and [,
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are log color space values corresponding to color values
recorded in the image files, for the color and intensity of
the selected image locations i and j, respectively, B, is a
component of V,; not aligned with illumination change
between the selected image locations and is a vector
defined by B,=V,—~(V,N), where N is a BIDR normal,
., 1s a scalar value based upon a smooth scalar function
a that varies from O to 1, as a function of a degree of
change expressed by I,-I, corresponding to one of an
illumination change or a material reflectance change,
and w”;; is a temporal constraint confidence weight cal-
culated as w”;=s,,*w,, wherein w,; is a constraint weight
and s, is a scaling factor determined as a function of the
n frames between the image file k and the image file k-n
frame of the video and

solve the log color space equation to identify an intrinsic

component of the selected image locations.

5. The computer program product of claim 4 wherein the
scaling factor s,, is calculated according to an equation:

s;=T, exp (-121202),

wherein T, is a pre-set temporal weight and o, is a temporal
sigma calculated as a function of n.

#* #* #* #* #*



